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Commercial fishery harvest is a powerful evolutionary agent, but we know
little about whether environmental stressors affect harvest-associated selec-
tion. We test how parasite infection relates to trapping vulnerability
through selective processes underlying capture. We used fish naturally
infected with parasites, including trematodes causing black spots under
fish skin. We first assessed how individual parasite density related to stan-
dard metabolic rate (SMR), maximum metabolic rate (MMR) and absolute
aerobic scope (AAS)—then used laboratory fishing simulations to test how
capture vulnerability was related to parasite density. We further explored
group-trapping dynamics using experimental shoals containing varying
proportions of infected fish (groups of six with either 0, 2, 4 or 6 infected
individuals). At the individual level, we found a positive relationship
between parasite presence and SMR, but not MMR or AAS. While we saw
no relationship between individual metabolic capacity and vulnerability to
trapping, we found the length of time fish spent in traps increased with
increasing parasite density, a predictor of trapping-related capture prob-
ability. At the group level, the number of infected individuals in a shoal
did not affect overall group trapping vulnerability. Our results suggest
that parasite infection has some capacity to shift individual vulnerability
patterns in fisheries, and potentially influence the evolutionary outcomes
of fisheries-induced evolution.
1. Background
Human impacts on animal populations are a major evolutionary force in both
terrestrial and aquatic ecosystems [1–3]. Across contemporary anthropogenic
processes influencing the evolution of wildlife, fishing is among the strongest
[4,5]. Modern commercial fishing has become tremendously efficient, often
exceeding exploitation rates of prey by natural predators [6]. Although debate
still exists on how severely fish populations are affected by human fishing
activity at an evolutionary level [7], some clear trends are apparent. For
instance, fish body size is well-documented as being a strongly influenced by
fisheries-associated selection [8,9]. In addition, studies on wild fish, fish in
mesocosms [10–13], laboratory simulations using model species [14–16] and
computational modelling [17] suggest fishing also selects on traits such as
swimming performance, activity levels, shoaling behaviour, metabolism and
habitat choice. In addition to the intrinsic selective processes that exist in fish-
eries, an important aspect that remains understudied is how fluctuating
environmental conditions and/or biotic stressors influence fishing-associated
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selection. While tremendous progress has been made in iden-
tifying and quantifying mechanisms underlying fisheries-
induced selection and evolution (FIE), synergistic influences
of additional stressors on selection could alter selective
processes in ways yet to be fully understood [18].

Both selection, and the traits targeted by selection, are
liable to fluctuate in the presence of abiotic and biotic stres-
sors. Parasites are pervasive among wild animals and are
known to affect host behaviour, physiology and performance
[19–26]. Depending on context, parasites may constitute an
important stressor, potentially altering trait expression and
correlated selection. Importantly, little is known about how
parasite infection relates to fishing-associated selection.
There is clear evidence that parasites can influence predator
avoidance through mechanisms that include decreased
social responsiveness [20], decreased host condition [27], be-
havioural manipulation including increases in activity and
risk-taking [28–31], and dampening of locomotory capacity
[32,33]. Equally, parasites may influence host vulnerability
to fishery harvest. Wilson et al. [34] showed that bolder fish
are more likely to enter traps, and suggested this is princi-
pally a function of their behavioural phenotype along a
shybold continuum. Interestingly, they also found differences
in the parasite fauna among fish caught using different fish-
ing methods (traps versus seines), trends which were likely
driven by differences in fish behaviour when infected, such
as increased exploration. Traps are a passive fishing tech-
nique deployed, left unattended and then recovered by
fishers after some time interval. They vary greatly in design
depending on habitat, and are used in both freshwater and
marine fisheries. Even though fish are sometimes able to
exit traps after entry [35], the probability an individual fish
will be captured during trap retrieval increases with the
amount of time they spend in the trap. For example, social
responsiveness is an important factor modulating residence
time in traps, with individuals following conspecifics into
traps and even re-rentering traps after exiting to remain
with their shoalmates [16]. If parasite infection were to posi-
tively influence the time a host remains within a trap by
altering aspects of behaviour related to willingness to enter,
or remain within a trap, then fishers may be inadvertently
be selecting on individuals that are more vulnerable to para-
sites within a population.

In addition to effects on behaviour, parasites can affect
host energy budgets as there are costs associated with mount-
ing an immune/stress response, as well as repairing
damaged tissue in response to infection [36]. Similarly, in a
fishery context, metabolism is thought to be a target of selec-
tion given its links with whole-organism performance and
maintaining homeostasis. For instance, in trap fisheries, a
higher basal metabolic cost may induce greater activity and
exploration, thus resulting in higher capture likelihood. Stan-
dard metabolic rate (SMR) is a proxy for the minimum
energy expenditure in a resting, fasting and relaxed
ectotherm, while maximum metabolic rate is the upper
limit of an organism’s aerobic metabolic capacity. The absol-
ute difference between the two, termed absolute aerobic
scope, is representative of the capacity to support aerobic
activities beyond basic maintenance [37–39]. In ectotherms,
parasite infection can influence both SMR and MMR
[40,41], though parasite-associated effects on energy budgets
remain unclear and significant among-system variance exists
[42]. Importantly, energetic traits such as MMR and SMR
have been recognized as potential targets for fishery selection
given their links with whole organism performance [15,43].
The broad impacts of parasites on host physiology and be-
haviour mean we may be underestimating the influence
they have on phenotypic variation, which is the material on
which fishing-associated selection can operate.

Group living typically offers benefits including increased
foraging efficiency and dilution of predation risk [44]. How-
ever, within a fishery context, group living can be
deleterious, as fishing gears often specifically target groups
of schooling fish. Thus, being in larger groups may render
individuals more vulnerable to capture [16,17]. For example,
purse seine fisheries target shoaling species, encircling whole
schools, thus negating the anti-predator benefits of living in a
large group [45]. There is also evidence that social cohesion
can increase vulnerability to trapping, with individuals fol-
lowing groupmates into traps. However, the exact role of
social dynamics in vulnerability to passive gears is largely
unknown. Individual behavioural tendencies can be influ-
enced by environmental stressors, which in term might
affect the decision-making process of the whole group,
given the presence of quorum responses in fish schools [46].
Given that parasite infection can increase shoal cohesion
and size [47], parasitized fish may be more likely to be cap-
tured in trap fisheries, owing to increased social cues and
denser shoals. On the on the other hand, if parasites were
to disrupt shoaling behaviour [20,48–50] then parasitized
individuals may be less likely to be captured. Moreover, the
capture vulnerability of entire groups may be influenced by
the proportion of infected individuals within the shoal and
the overall effect on their collection behaviour and decision-
making. Quantifying the impact of parasite infection on
shoaling dynamics and group behaviour is fundamental in
understanding the overall impact parasites may have on
fishing-associated selection.

Using healthy sunfish (Lepomis gibbosus), and those natu-
rally infected with black-spot trematode metacercaria, we
explored the relationships among parasite infection, aerobic
metabolism, group composition and capture vulnerability
in a scaled-down trap fishery. Sunfish are a small shoaling
species inhabiting the whole water column and displaying
social behaviors similar to many commercially targeted
species that are fished with traps (e.g. European perch
(Perca fluviatilis)). Determining the relative importance of
natural levels of parasitism in fishery selection is essential
for understanding the synergistic impacts these two evol-
utionary pressures may have on fish populations. The study
aims were threefold: (i) to explore the relationship between
trematode density and aerobic metabolic traits (MMR, SMR
AAS); (ii) to assess the relationship between parasite density
and individual trapping vulnerability; and (iii) to assess
whether overall group trapping vulnerability is influenced
by the number of infected individuals within a shoal. To
address these aims, we first measured SMR, MMR and calcu-
lated AAS for all fish. We then carried out a simulated
trapping experiment varying the number of infected individ-
uals within a group to either 0, 2, 4 or 6 in each trial (out of six
fish total within each group). We hypothesized that standard
metabolic rate (SMR) would be higher in more heavily
infected fish, making them more likely to enter and remain
in baited traps due to their high energetic requirements. We
also predicted that heavy infection would be related to
changes in MMR and AAS. Additionally, we predicted
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groups with a higher number of infected individuals would
have an overall higher vulnerability to trapping, as the
presence of more infected individuals within a shoal could
lead conspecifics to be more risk-prone and exploratory,
independent of their own infection status.
publishing.org/journal/rspb
Proc.R.Soc.B

289:20221956
2. Material and methods
(a) Experimental protocol
The experiment was conducted from mid-September to mid-
November 2019. In addition to the quantification of encysted
metacercaria (black-spot) on live fish, fish were euthanized and
dissected following behavioural trials between June 2020 and
March 2021 to quantify and identify other internal parasites.

(b) Animals
We used pumpkinseed (n = 152; mean ± s.d. body mass = 8.63 ±
2.99 ; mean ± S.D. standard length = 64.03 ± 7.61 ) collected from
the three lakes surrounding the Université de Montréal’s Lauren-
tian Biological field station (Canada, 45° 590 17.800 N, 74° 0020.900

W). Fish were captured using seine nets between the 11th and
21st of September 2019, and chosen based on their visible
black-spot infections. Black-spot disease is a condition caused
by trematodes (Uvulifer and Apophallus sp.) and characterized
by conspicuous black spots formed by encysted metacercaria
under the skin and fins of the fish. Collected fish from all three
lakes were housed together in three large 600 L tanks supplied
via a flow-through system pumping water from Lac Croche
(45° 590 32.100 N, 74° 000 38.600 W; range = 15–18.3°C). They were
fed daily with frozen bloodworms (Chironomidae) ad libitum.
Upon arrival at the aquarium facilities, fish were treated in a per-
oxide bath (concentration = 2.5 mg l for 25 min) to remove any
external pathogens; this did not influence the presence of
black-spot metacercaria. Fish differed in their black-spot count:
fish from Lac Croche and Lac Cromwell (45° 590 20.600 N, 73°
59056.400 W) exhibited a gradient of trematode infection (respect-
ively median = 196, range = 3–487, median = 112, range = 32–505),
while fish in Lac Triton (45° 590 16.400 N, 74° 00028.500 W) had no
visible trematode parasites. Fish were visually assessed for signs
of parasite infection and split into two categories: infected (with
visible encysted black-spot trematode metacercaria on fish sur-
face), and non-infected (no visible encysted black-spot
metacercaria on fish surface), and tagged using a unique combi-
nation of coloured VIE elastomer (NorthWest Marine Technology
Inc.) to allow individual identification during the trials. Fish
were kept on a 12 h light : 12 h dark photoperiod throughout
the experiment. In order to minimize any potential lake effects
fish were housed and habituated together, thus having the
opportunity to interact and shoal together prior to group-level
experiments.

(c) Metabolic rate measurements
Following tagging, fish were rested for a minimum of three days
prior to measuring metabolic phenotype. Twenty-four hours
prior to testing, fish were removed from their home tank and
transferred to a separate holding tank, where they were fasted
for 24 h prior to respirometry measurements to minimize stress
and reduce possible aerobic energy costs related to digestion.

We used intermittent flow respirometry to measure the
instantaneous oxygen uptake (MO2, in mg O2 h

−1) of each fish,
which we used to estimate MMR and SMR [51,52]. For full
details of methods see electronic supplementary material, table
S1 [53]. Eight fish were analysed each day over the course of
18 days, beginning on 29 September 2019. Owing to a system
fault, no measurements were taken on 10 October 2019. Typically
all fish were in their respective chambers by 13.00 daily, and were
removed from the chambers between 8.00 and 9.00 the next day.

Individual animals were placed in one of eight acrylic
respirometry chambers (empty volume = 449 ml; tubing =
�48 ml) immersed in two temperature regulated (mean ± s.d. =
15.88 ± 0.19 C°) baths each approximately 90 l in volume (i.e.
four chambers in each bath). Temperature regulation was
achieved by circulating water from the baths to a thermally con-
trolled tank via two Eheim Universal 300 pumps, the thermal
control loop made of plastic tubing included a metal coil which
served to increase thermal exchange between the heated tank to
the baths. A thermal controller switched the thermal control
loop pump on or off depending on the desired temperature:
when on, water was circulated through a chiller unit (Thermo
Scientific Hakke EK20 immersion cooler) and into the coils, thus
lowering thermal bath temperature, a further set of pumps circu-
lated the thermal bath water into baths holding the respirometry
chambers. System cleaning was achieved via a recirculating loop
in the thermal bath hooked to a pond UV lamp, and regular clean-
ing (approx. every 5 days) using a mild bleach solution. Chamber
mixing was done via small in-line pumps (Aquapro AP200LV,
200 l h−1) linked via non-permeable tubing to each chamber, flush-
ing was achieved by a single small pump split between all
chambers in each bath. A digital timer periodically switched on
the pump, which flushed chambers with fully aerated water for
4 min, and then switched off for 6 min.

Both MMR and SMR were estimated for each fish. MMR was
estimated following a standard chase protocol [54]: individual
fish were removed from their holding tank each morning
around 10.00 and transferred to a circular trough where they
were chased manually for three minutes. Following the three-
minute chase period, fish were air exposed for one minute.
After the air exposure period, fish were immediately transferred
to a respirometry chamber (less than 10 s). Water oxygen content
was logged once every 2 s using a Firesting 4-channel oxygen
meter and associated sensors (PyroScience GmbH, Aachen,
Germany), all sensors were located within the re-circulation
loops of the system. Each respirometry chamber was wrapped
in black polyethylene to minimize visual disturbance, and follow-
ing MMR measurements, each bath was shielded from external
disturbance by covering them with black polyethylene sheeting.
Following respirometry, fish were weighed to the nearest gram
and returned to their home tank. Each Firesting oxygen metre
also logged the temperature in each of their respective baths.
The first slope of measurements was used to calculate MMR, the
remaining slopes were used to calculate SMR. Slopes were visu-
ally assessed during the auto_rate function in respR [55], and
discarded if found to be of poor fit (e.g. obvious deviations
from linearity: less than 5% were discarded). To calculate
oxygen uptake (SMR, MMR), we used respR, and corrected for
background respiration using readings from each empty respiro-
metry chamber at both the start and end of each run (i.e. a set
of eight fish). SMR was estimated from MO2 measures taken over-
night and was calculated as the mean of the lowest 10th percentile
of adjusted rates [38]. Chamber volume and associated tubing
were included in calculations of oxygen uptake.
(d) Trapping trials
(i) Setup
As well as investigating the relationships among individual para-
site load, trap capture and metabolism, we tested whether
varying the number of uninfected and infected individuals
within a shoal influenced overall fishery vulnerability of the
group. We created four treatment groups of six fish: six unin-
fected individuals (6u); four uninfected and two infected (4u-
2i); two uninfected andfour infected (2u-4i); and six infected



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20221956

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 M

ay
 2

02
3 
(6i). Treatment groups were replicated, resulting in a total of 100
trials (6u = 24, 4u-2i = 24, 2u-4i = 27, 6i = 25).

Trials were conducted in an elliptical arena (major radius =
154 cm; minor radius = 93 cm) made from 3 mm white acrylic
sheeting and filled to a depth of 17 cm. Arena water was supplied
via a flow through system kept at the same temperature as the
home tanks (approx. 15 C°). Three artificial plants were placed
in the arena to encourage exploration and reduce stress. A clear
8 mm thick acrylic tube measuring 19 × 25 cm (W×H) was used
as an acclimation area, this was connected to a pulley system
which allowed remote lifting. A single trap 204 × 110 × 115 mm
(L ×W×H) was used during trials and baited using bloodworm
to simulate fisheries capture. The trap was made from a metal
frame (1.5 mm stainless steel) covered in green netting (less than
2 mm in size) with two inverted funnel entrances (22 × 45 mm;
W×H) at each end. To allow recoding of fish entrance/exits, the
top of the trap was constructed from clear 1.5 mm acrylic sheeting
cut with a hole allowing the mounting of a GoPro Hero 4 (16:9
Full HD, 720p; GoPro, San Mateo, California, USA) camera.
Each trial was also recorded from above using a Logitech HD
Webcam c920 (Logitech Europe S.A., Lausanne, Switzerland)
located approximately 130 cm above the water level and mounted
on a wooden frame (189 × 120 × 150 cm; L ×W×H) covered in
canvas sheeting. Lighting within the behavioural arena was
provided by four 8 watt 580 mm lights (Rona, Saint-Jérôme,
Quebec, Canada).

In addition to elastomer tags, prior to each trial, fish were
individually tagged with a small coloured paper tag (six differ-
ent colours) to aid video identification, this was glued to the
top of the head using a drop of super glue. These tags were
removed at the end of the trials along with and residual glue.
No fish experienced any noticeable effects from the procedure.
(ii) Trial procedure
Prior to each test day, treatment groups were fasted for 24 h and
isolated from other fish to standardize hunger and minimize
stress. At the beginning of the trial, each fish was removed
from their home tank and tagged as described above. Following
tagging (typically < 10 s), fish were immediately placed one by
one in the acclimation area. As soon all the fish were tagged,
video recording started and fish were given 10 min to habituate.
The tube was then lifted via the pulley system and fish were
allowed to interact with the trap in the arena for 40 min.
(iii) Dissections
Once all behavioural trials were completed, all fish were eutha-
nized in an overdose of eugenol solution and frozen at −18°C.
Fish were transported in ice to the laboratory facilities at the Uni-
versité de Montréal’s MIL campus for dissection. Whole fish
were first observed under a stereomicroscope to accurately
count the number of encysted black-spot metacercaria on the
entire surface of the body. Fish were then dissected to quantify
parasites in the digestive tract, abdominal cavity and muscle tis-
sues; it should be noted that muscle dissections were not
exhaustive but were consistent among fish. In sampled lakes,
these endoparasites are mostly cestode Proteocephalus ambloplitis
(bass tapeworm) and occasionally trematode Clinostomum mar-
ginatum (yellow grub) ([56], Binning unpublished data).
Similarly to black-spot, Lac Croche and Lac Cromwell exhibited
a gradient of endoparasite infection (respectively median = 0.5,
range = 0–20, median = 16, range = 0–16), while fish in Lac
Triton had no endoparasites. Raw numbers from these
counts were divided by fish mass to yield parasite density
(no. of parasites per gram of mass) separately for black-spot
metacercaria and for other endoparasites.
(e) Statistical analysis
All analyses and figures were done in R v. 4.1.2 [57,58] primarily
using packages ‘tidyverse’, ‘rptR’, ‘glmmTMB’, ‘dabestr’ and
‘DHARMa’ (see electronic supplementary material, table S5, for
full package list). Where suitable, we checked model assump-
tions for homoscedascity and normality by inspecting residual
and quantile plots. Broadly, analyses were split into three sec-
tions: (i) the relationship between parasite infection and aerobic
metabolic traits, (ii) how consistently individuals that were para-
sitized and unparasitized entered traps calculating repeatability
across trials for each fish, and (iii), whether individual trapping
vulnerability, as well as group trapping vulnerability, differed
as a function of individual parasite density or the number of
parasitized individuals within a shoal.

We used a binary score based on whether a fish entered or
did not enter a trap for repeatability calculations at an individual
level. For all other individual based analyses, we used individual
capture vulnerability (VI), defined as time in seconds a fish spent
inside a trap during a trial (range = 0–2400 s). For all group ana-
lyses, we used group capture vulnerability (VG), which we
defined as the sum of all individual trapping vulnerability
times during a trial (range = 0–14 400 s).

To investigate whether fish condition was related to trap
entry, we calculated the scaled mass index (SMI) for each fish
[59]. We also calculated coefficients of variation (s.d./mean) of
summed time spent in traps for group-level analyses.

( f ) Individual models on metabolism
To test whether there was a relationship between parasite density
and host metabolic rate, we used three linear regressions, one
each for SMR, MMR and AAS (O2 mg h−1). Each metabolic vari-
able was log-transformed and used as response variable in
models, while density of black-spot metacercaria, density of other
endoparasites, collection lake and log(mass) were used as explana-
tory variables. Candidate models were compared using Akaike’s
information criteria (AIC) [60]; scripts to reproduce all models
with a delta AIC < 2 are presented in the electronic supplementary
material, but only the results from the top models are presented in
the result section. For all linear regressions, we checked model
assumptions of homoscedasticity and normality by visually
inspecting residual and quantile–quantile plots.

Oxygen measurements from two fish (gggr and ryyp) were
identified as extreme outliers. Models were initially run on data-
sets including and excluding the fish, which led to no differences
in model interpretation; ultimately the fish were removed from
analyses which included metabolic rate data.

(g) Individual repeatability
We calculated repeatability of trap entry using the rptR package,
which uses mixed-effects models to model repeatability (R) [61].
Repeatability using binary data for entry/non-entry was calcu-
lated between infected and non-infected groups. We controlled
for mass-specific variation by including it as a fixed effect in
the estimate calculations and included fish ID as a random
effect in all models to account for inter-individual variance.
Iterations for bootstrapping and permutation were set to 10 000.

(h) Individual models on trapping vulnerability
Wemodelled trapping vulnerability for each fish using a series of
zero-inflated hurdle models in the package glmmTMB [62].
Hurdle models treat zero and non-zero outcomes in data as
two separate categories. In this case, models show which predic-
tors increase the probability of capture versus non-capture (zero
or not zero), but also how each predictor influences non-zero
values in the data (1–2400) – thus how much time a fish spent
in the trap. Structurally there are three components to the
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analysis: a conditional formula (for non-zero values), a zero-
inflated formula (for zero-values), and a dispersion formula (to
address overdispersion in data). Across all models, we used VI

as the response variable. Three separate models were fitted,
one for each of three metabolic variables (SMR, MMR, AAS) to
avoid any collinearity issues between metabolic variables.
Given we were interested in understanding how both trematode
and other parasite density might be related to trap vulnerability,
we included respective parasite densities as two different factors
in each model as explanatory variables. We also included fish
mass (g), lake of capture and treatment group (6u; 4u-2i; 2u-
4i; 6i) as explanatory variables. Fish ID and trial number were
included as random effects. Zero-inflation structure for the
models was kept the same as the conditional effects formula by
specifying zi =�. in the model call, and a zero-truncated negative
binomial distribution was used for the conditional model. We
used the default glmmTMB dispersion structure in all models.

To select final models, we dropped fixed terms individually
from full models and refitted them. All structurally nested
models were then compared using the ‘AICtab’ function from
the package bbmle. Candidate models were compared using
Akaike’s information criterion (AIC) [60]; again, scripts to repro-
duce all models with a delta AIC < 2 are presented in the
electronic supplementary material, but only the results from
the top models are presented. In all cases where metabolic vari-
ables were kept in the final model, mass was also kept to account
for the scaling effects of mass on metabolism.

(i) Group model on trapping vulnerability
To analyse the effect of treatment (6u; 4u-2i; 2u-4i; 6i) on VG, we
used a zero-inflated model with a negative binomial distribution.
Treatment was included as a categorical explanatory variable,
whilst test number was included as a random effect. The default
dispersion structure was used, and zero-inflation structure was
specified as zi =�behavioural_treatment, signifying the probability
of producing a zero was based on the behavioural treatment group.
3. Results
(a) Individual models on metabolism
SMR was higher with increased black-spot metacercaria den-
sity: SMR (adj R = 0.63, 95% CI = 1 × 10−04, 0.012, p = 0.01);
this was not the case for MMR (adj R = 0.52, 95%
CI =−1.32 × 10−03, 9.06 × 10−02, p = 0.132), nor AAS (adj R =
0.39, 95% CI =−2.96 × 10−03, 1.07 × 10−02, p = 0.262). Each
unit increase in trematode density contributed to an approxi-
mate relative increase of 0.69, 0.42 and 0.39 mg h % in SMR,
MMR and AAS, respectively. None of the final models
included other endoparasite density, but included collection
lake and fish mass (electronic supplementary material, table
S2; figure 1).

(b) Individual repeatability
Adjusted repeatability of parasitized individuals (R = 0.202,
95% CI: 0.094–0.284, p < 0.001) was higher than non-
parasitized individuals (R = 0.041, 95% CI: 0–0.064, p = 0.173).
Confidence intervals of repeatability estimates for non-
parasitized fish overlapped zero.

(c) Individual trapping vulnerability
The most parsimonious models for trapping vulnerability
across metabolic variables SMR, MMR and AAS included all
covariates with the exception of collection lake. Density of
black-spot metacercaria was found to positively relate to (VI)
in all conditional models, while density of other endoparasites
was negatively related to (VI) across conditional models.
Neither parasite densities were strongly related to the binary
component of the model, meaning parasite load did not influ-
ence trap entry. Metabolic variables SMR, MMR and AAS did
not have any influence on whether fish entered traps, nor the
time they spent in traps. This was in contrast to log(mass),
which across models was strongly related to trap entry, with
larger fish entering traps less often (electronic supplementary
material, table S3 and figure S1(a)). While fish body condition
was not related to the likelihood of trap entry (electronic
supplementary material, figure S1(b)).

(d) Group trapping vulnerability
The number of parasitized individuals within a group did not
strongly influence VG (electronic supplementary material,
table S4; figure 2). Groups wholly consisting of individuals
with parasites or without parasites had, on average, higher
residency times within traps than mixed groups (6u VG

mean ± s.d. = 3565 ± 2968; 6i VG mean ± s.d. = 3367 ± 2420;
2u-4i VG mean ± s.d. = 2938 ± 2505; 4u-2i VG mean ± s.d. =
2729 ± 2670). Among treatment groups, 4u-2i had the highest
coefficient of variation (CV = 97.8%), followed by 2u-4i
(CV = 85.3%), 6u (CV = 83.3%) and 6i (CV = 71.9%).
4. Discussion
We found that black-spot density positively correlates with
some measures of capture vulnerability at an individual
level. Specifically, fish with a higher density of black-spot
metacercaria spent more time within traps but were equally
likely to enter traps as fish with fewer or no metacercaria.
Density of other endoparasites showed a weak, negative cor-
relation with time fish spent in traps at the individual level.
We hypothesized that being infected with black-spot trema-
tode metacercaria would be related to an increased
individual likelihood of capture through a mechanistic link
with metabolic rate. However, although we found a positive
relationship between black-spot trematode metacercaria den-
sity and SMR, we found no evidence of SMR being related
to trap vulnerability. This suggests parasite density may be
directly affecting trap vulnerability, but not via effects on
metabolism. At the group level, the number of parasitized
individuals had no effect on vulnerability. Our results suggest
that in a full-scale fishery harvest scenario, parasite infection
could shift selection patterns around traps with more heavily
infected fish spending more time in traps, and thus being
more vulnerable to capture. If this effect is sufficiently
strong, it could not only serve to alter the selective landscape
in fishing, but also have wider scale repercussions on parasite
dynamics [63]. In addition, preferential removal of heavily
parasitized fish may also lower the palatability of captured
fish, potentially influencing the economic value of the catches
[64]. These results provide an excellent example of how stres-
sors acting in synergy with fishing, can potentially influence
broad-scale selective processes in fishery harvest.

Adjusted repeatability of trap entry in parasitized individ-
uals was considerably higher than in non-parasitized
individuals. Meaning the consistency of either entering or
not entering traps is greater in individuals that have black-
spot metacercaria. Previous work has shown behavioural
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consistency in some traits, such as aggression, can increase in
response to greater infection from parasites [65]. Therefore,
there is potential for our repeatability results to be a direct
effect of black-spot infection. The strength of such homogen-
izing effects on behaviour are very likely related to both the
type of parasitic infection and host species. Here, we did
not quantify the specific trematode species found in our
fish. However, some trematodes only encyst dermal and epi-
dermal tissue, while others are known to encyst in the muscle
or brain of their hosts [66]. Thus, the impact from different
species of trematode on capture vulnerability could vary sub-
stantially from what we observed here. Although the
mechanism influencing our repeatability estimates remain
unknown, it is clear that individuals with parasites demon-
strate more consistent behaviour around traps, either
consistently entering or not-entering across trials. Given
repeatability can represent the upper bound of heritability
[67], which is a key parameter dictating responses to selection
[68]; our results indicate parasitized fish may be under
increased selection pressure when compared to unparasitized
individuals. Not only could this lead to direct selection on phe-
notypes vulnerable to parasite infection, but also on correlated
physiological and behavioural traits. It should be noted
confidence intervals for repeatability estimation were large,
thus the precision of these estimates can be considered rela-
tively low. Further work is needed to elucidate how parasites
may influence the repeatability of capture in fisheries.

We observed a positive relationship between SMR and
the density of black-spot metacercaria, while the relationship
between these parasites and MMR/AAS was negligible.
Importantly, we found no relationship between metabolic
traits and fishing vulnerability. This suggests that despite
the positive relationship between black-spot intensity and
aerobic metabolism, no clear trend exists between metabolic
phenotype and trap capture. This finding is in line with pre-
vious work testing how metabolism influences trapping
vulnerability, showing no clear link between aerobic energy
consumption and the length of time fish spent in traps [16].
By contrast to our results, other recent work, has shown no
relationship between aerobic metabolism and black-spot
count [56]. Previously, it has been shown that oxygen
consumption rates of bluegill sunfish (Lepomis macrochirus)
increased approximately one month following black-spot
infection, and that energetic costs from this disease may
only influence energy consumption during this period [69].
Here, aerobic energetic demand correlated positively with
black-spot metacercaria density, perhaps indicating that
during the period in which fish were captured and tested,
black-spot metacercaria had recently infected the host,
thereby affecting host metabolism. In addition, whereas Gui-
tard et al. [56] found a negative relationship between other
endoparasites and metabolic traits, here we found no strong
relationship between the two. These discrepancies may be
explained by differences in the sampling dates, and thus
temperatures at which these relationships were tested (July
versus October), with different thermal conditions serving
to affect parasite activity. In addition to activity, black-spot
infection intensity is also seasonal, with counts being highest
during the autumn months [48]. Here, we found higher
median black-spot counts (n = 127), than in the Guitard
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et al. [56] study (n = 112; doubling numbers as only one side
was sampled). It is possible that a metabolic cost is only evi-
dent after a specific threshold of black-spot infection is
reached, perhaps in relation to an associated stress response
in the host [69,70]. It is unknown whether black-spot causes
a stress response in fish, but this could be a possible mechan-
ism driving the higher basal metabolic costs witnessed.
Overall, our results suggest that dynamics between fishing,
parasite infection and metabolism are complex, and more
work is needed, particularly using wild fish populations, to
elucidate this relationship.

The number of parasitized individuals within a group
had no strong effect on time fish spent in traps at the group
level, nor whether they entered enter traps. Across our four
treatment groups, shoals of individuals composed of either
wholly infected (6i), or wholly uninfected (6u) fish, were
most similar in terms of the sum of time they spent in
traps. This suggests there is some conformity in behaviour
that arises in uniform groups; but that this trend is not pre-
sent in mixed shoals. Parasites are thought to maximize
inter-individual variation in behaviour, contributing to the
maintenance of ‘animal personalities’ [71,72]. In relation to
trap entry at the individual level we found the opposite
of this trend: individuals with parasites showed more consist-
ency in behaviour. However, at the group level, results here
support the idea that parasites may increase within-group
variation in fishing vulnerability, as shoals composed of
mixed infection phenotypes had high coefficients of variation
in group trapping vulnerability. It is worth noting that unlike
for individual-based analyses, in our group analyses we did
not use a random effect to control for origin as metrics
tested were a product of fish from different lakes. Therefore,
it is possible that the shoaling behaviour could be con-
founded by the ratio of individuals from different lakes in
each shoal. We tried to minimize the chance of this occurring
by housing and habituating fish from different lakes together
prior to the start of all experiments. Further work quantifying
how parasite infection renders individual behaviour more
repeatable, but also how this translates into group decision
making, is needed to elucidate possible mechanisms
influencing selection.

Aerobic metabolic phenotype was not related to the time
fish spent in traps, nor likelihood of trap entry. Meaning that
at the scale tested, the influence of aerobic metabolism on
trap capture is negligible. Previous work using active gears
has found links between vulnerability to fishing and aerobic
metabolism. However, this is thought to arise owing to corre-
lations between aerobic and anaerobic metabolism [15,73]. By
contrast to active gears such as trawls, which are through to
select on performance traits, trapping vulnerability likely
selects on behavioural traits [48,74,75]. Studies assessing
how metabolic phenotype influences capture in both trap-
ping and rod and line angling have found little evidence of
these fishing techniques selecting on aerobic capacity (e.g.
SMR [16,76]). Although here we found parasite density to
positively relate to SMR, we also found no evidence to
suggest metabolism relates to capture at the scale tested.
However, given that aerobic metabolic phenotype can be
associated with higher activity levels and aggression
[77,78], it is still possible that selection on SMR, which here
we found to be related to parasite load, may occur. This
may only influence selection at wider spatial scales, some-
thing not tested in this study. For instance, assuming that
individuals with higher energetic requirements need to
forage more often and across larger ranges, then the prob-
ability of these individuals encountering traps, becoming
infected and being caught is higher than that of individuals
with lower energy requirements. Indeed, black-spot, has
been found to increase both the home range and activity
levels of Atlantic cod (Gadus morhua) [79]. Although the
mechanism promoting this behavioural change was not
identified, increased activity could directly increase the likeli-
hood of parasitized individuals being captured compared to
unparasitized individuals. Further work is needed to deter-
mine if metabolic phenotype is under selection in trap
fisheries, when considering wide-scale movement and
activity patterns of fish.

We found a strong effect of body mass on trap entry, inde-
pendent of fish body condition (scaled mass index), with
larger fish entering traps less often. Given all fish comfortably
fit within the inverted funnel trap entrances - which were
approximately 31% deeper and approximately 44% wider
than the largest fish, reluctance of some fish to enter traps
was likely behavioural, and not a physical limitation.
Recent work suggests that continued exploitation of large
fish might be driving a long-term global decline in parasite
numbers [63]. This might indeed be the case in instances
where larger fish, which tend to have greater absolute para-
site abundance and richness, are preferentially targeted.
However, we saw that larger fish had both a lower density
of parasites, and were less likely to be captured. This suggests
that no wide-scale impact on parasite population dynamics is
likely to occur with this method of fishing as a function of
size. Why some fish entered traps more frequently may be
linked to their internal hunger state. The terms hunger and
condition (body condition) are often used interchangeably
in fish studies [80], though work denoting how these two
traits relate to one-another is scarce. Presumably, fish in
lower condition have higher hunger levels, and vice versa.
Here, we expected fish in lower condition to be more
attracted to the traps, and incur higher trapping rates, due
to links that exist between hunger and activity/exploration
rates [81]. However, although overall body size was nega-
tively correlated to trap entry, no such trend was present
for body condition and trap entry. Therefore, in this case,
hunger, as indicated by lower body condition, did not play
a strong role in trap capture. All fish in our trials were
fasted for 24 h, meaning their immediate hunger states were
possibly similar, this could have served to homogenise cap-
ture regardless of condition if proximate hunger state has
more influence on behaviour than overall condition. It
should be noted that we calculated scaled mass index
based on the weight of both parasites and fish, which can
in some cases lead to an overestimation of condition [82].
We found no relationship between body condition and
black-spot metacercaria density (electronic supplementary
material, figure S2), therefore we do not expect our condition
indices to be inflated by parasite mass.

The dynamics among fishing-associated selection, para-
sites and their hosts, are a function of both fishing method
and the species in question. Our study focused on a fresh-
water centrarchid fish species that is not commercially
targeted. Although global captures in marine fisheries are
greater than those from freshwaters, freshwater fisheries are
critically important across the globe with regard to food
and economic security, as well as cultural importance [83].
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While centrachids are not commercially fished, Percidae
including walleye (Sander vitreus), zander (Sander lucioperca)
and European perch are all freshwater species targeted by
commercial trap fisheries, are prone to black-spot infection,
and occupy similar ecological niches as centrarchids. Our
results are thus particularly relevant for these fishes, but
should also be considered important within the context of
other fisheries, such as those centering on South American
and African cichlids (e.g. the ornamental fish trade). There
are numerous other freshwater fish taxa targeted by smal-
ler-scale artisanal fisheries across the globe, and our results
suggest that interactions between parasite infection and vul-
nerability to passive fishing gears should be examined in
these fisheries. Furthermore, given the variety of parasite
species, and the varied effects they have on their host, such
as affecting sensory ability [84], influencing habitat selection
[19,85], increasing hydrodynamic drag [86], and damaging
fins [87], it is clear that parasites could significantly disrupt
the ability of fish in sensing and responding to fishing
gears. We hope our results will provide a catalyst for further
work directly addressing how parasite influence capture
within commercially exploited species.

Fisheries-induced evolution remains a debated issue [7]. If
fisheries-associated selection on traits other than fish size
does occur, it is likely influenced by a multitude of extrinsic
factors, which may either accentuate or dilute the evolution-
ary potential of fishing. Passive gears, such as pots/traps,
are considered more environmentally friendly methods of
fishing compared to gears such as trawls, which have a
high energy consumption, significant habitat impacts and
high bycatch levels [88]. Pots/traps have shown to be
viable in several demersal fisheries including species such
as pacific cod (Gadus macrocephalus), sablefish (Anoplopoma
fimbria) and groupers [35,88,89]. Yet, almost nothing is
known on how selection on behavioural or physiological
traits in trap fisheries may occur. For the first time, we
show that parasite presence and density in fish relates to indi-
vidual susceptibility to capture in passive traps. Importantly,
in this study, we assessed the final moments before capture
occurs. However, the potential impacts to fishery selection
from parasites are not restricted to the immediate time
before capture, but may include spatially and temporally
extensive windows [73]. The extent to which synergistic stres-
sors may influence selection in the wild remains largely
unknown.
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