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Highlights
Availability of vital dietary biomolecules,
such as vitamins, amino acids, and fatty
acids, is critical for the evolution and
development of animals.

Extensive evidence indicates that anthro-
pogenic changes influence the distribu-
tion of vital dietary biomolecules in food
webs.

Shifts in the availability of these vital
biomolecules can trigger far-reaching
The physiological dependence of animals on dietary intake of vitamins, amino
acids, and fatty acids is ubiquitous. Sharp differences in the availability of
these vital dietary biomolecules among different resourcesmean that consumers
must adopt a range of strategies tomeet their physiological needs.We review the
emerging work on omega-3 long-chain polyunsaturated fatty acids, focusing
predominantly on predator–prey interactions, to illustrate that trade-off between
capacities to consume resources rich in vital biomolecules and internal synthesis
capacity drives differences in phenotype and fitness of consumers. This can then
feedback to impact ecosystem functioning. We outline how focus on vital dietary
biomolecules in eco-eco-devo dynamics can improve our understanding of
anthropogenic changes across multiple levels of biological organization.
changes in phenotypes of consumers
with potential cascading impacts on the
functioning of the ecosystems.

There is no unified integrative framework
to study the role of vital dietary bio-
molecules in feedbacks between
phenotypes of wild consumers and
ecosystem functioning.

We review evidence on omega-3 long-
chain polyunsaturated fatty acids (n-3
LC-PUFA) in prey–predator interactions
to illustrate how vital dietary biomolecules
moderate the feedbacks between be-
havioral, physiological, and life-history
traits of wild consumers and the higher
levels of biological organization.
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Ecological currency and commodity
Environmental changes induced by anthropogenic activities affect the flux and distribution of
nutrients, including vital dietary biomolecules (see Glossary) such as thiamine [1] or omega-3
long-chain polyunsaturated fatty acid (n-3 LC-PUFA) [2], across ecosystems around the
globe. The importance of these vital dietary biomolecules for consumer development has been
thoroughly studied in veterinary and medical sciences, providing evidence of their role for animal
health, reproduction, and neural tissue functioning (e.g., [3–5]). However, ecologists have rarely
considered the substantial spatial [6,7] and temporal [8,9] variations in the availability of vital dietary
biomolecules across the food webs. In addition, even closely related species and populations of
consumers can differ in their physiological dependence on specific dietary biomolecules [10] and
their capacity to synthesize them internally when they are not available in the diet [11–13].
Therefore, while energy is typically considered the common currency underlying numerous ecolog-
ical and physiological phenomena, vital dietary biomolecules likely play the role of critically limiting
commodities that are produced and transferred among consumers within and across food
webs. Dietary biomolecules can be a key determinant of individual fitness and affect the functioning
of ecosystems. Therefore, a greater focus on the role of vital dietary biomolecules in feedbacks
between phenotypes of consumers and their environment, that is, eco-evo-devo dynamics,
can improve our understanding of the effects of anthropogenic environmental changes across
multiple levels of biological organization. There is, however, a notable lack of integrative work
exploring the importance of vital dietary biomolecules in nature, causing researchers to overlook
potentially critical links between the evolution and development of consumers and ecosystem
functioning.

The role of vital dietary biomolecules in the evolution and development of consumer phenotype is
largely determined by the trade-off between the capacity of a consumer to acquire food sources
rich in a given dietary biomolecule and its capacity to synthesize that same molecule internally or
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via endosymbiosis from more accessible dietary precursors [4,14]. While many examples in this
review concern predator–prey interactions, this trade-off is intrinsic to most consumers including
parasites [14] and detritivores [15]. The fact that many consumers do not simultaneously invest
in both dietary acquisition and synthesis of vital biomolecules is likely driven by high energetic
cost of synthesis [16,17]. Moreover, adaptation toward one end of this trade-off may relax
selection pressure and lead to a loss of traits associated with the other [18,19]. Consumers
can limit this trade-off by reducing their physiological dependence on a given dietary biomolecule.
For example, by reducing growth of nutrient-demanding tissues, such as n-3 LC-PUFA-rich brain
[3], or by adopting behavioral and physiological strategies that increase the retention of scarce
dietary biomolecules [20]. However, reducing physiological dependence on vital dietary biomole-
cules in the short term can reduce the biological fitness of the consumer and limit its potential to
adapt to environmental change [21]. Importantly, these changes in consumer phenotype can
then feedback to the functioning of ecosystems. Traits of consumers related to dietary acquisition
and internal synthesis of the vital biomolecules (e.g., food source selectivity or organismal
stoichiometry) likely have direct impacts on ecosystem functioning and thus can be considered
functional effect traits, which determine the per-capita ecological impacts of consumers
[21,22] (Figure 1). Traits of consumers that drive the physiological need for specific dietary biomol-
ecules (e.g., brain or gonad size) have direct impact on fitness of consumers and thus can be
considered functional response traits that affect population growth and feedback to the
community and ecosystem levels as density-dependent ecological effects [22,23] (Figure 1).

We summarize emerging evidence of the ecological, evolutionary, and developmental importance
of vital dietary biomolecules using n-3 LC-PUFA as a specific example. While we focus on n-3 LC-
PUFA, the general concepts that we cover can guide research of eco-evo-devo dynamics on
numerous other vital biomolecules such as vitamins [24], sterols [25], and amino acids [26],
which are not as well studied from ecological and evolutionary perspectives as n-3 LC-PUFAs.

At the biochemical level, n-3 LC-PUFAs are critical for functioning of cellmembrane lipidswhich
have direct impacts on the efficiency of signal transfer in tissues [27] (Box 1). This key biochemical
function is why n-3 LC-PUFAs are important for a broad range of physiological [28], cognitive [27],
and life history [29] traits. There are ecologically meaningful differences in the availability of n-3 LC-
PUFA at the base of food webs at different spatial and temporal scales [7,9]. Globally, the main
source of dietary n-3 LC-PUFA is produced by aquatic primary producers [7,30], and in some
environments, also by bacteria [31] and protists [32]. Omega-3 LC-PUFAs from aquatic primary
producers are transferred to higher trophic levels [33], and a large part of this aquatic production
is transferred to terrestrial ecosystems [34,35]. The availability of n-3 LC-PUFAs is generally
higher in marine than in freshwater ecosystems [30,36]. It has been shown that the availability
of n-3 LC-PUFAs within marine ecosystems is closely linked to the algal community assemblage
[7,37]. There are numerous marine gradients in n-3 LC-PUFA availability with latitude, from poor
oligotrophic open ocean to rich coastal upwelling systems, from rocky to sandy coasts, or from
brackish estuary to salt marine waters [7,37,38]. In freshwater ecosystems, there is higher n-3
LC-PUFA availability in lentic than in lotic ecosystems [39]. At finer spatial scales, n-3 LC-PUFA
availability is greater in pelagic than in littoral areas of lentic ecosystems [40,41] and increases
with stream order in lotic ecosystems as freshwater primary producers become the dominant
source of energy [6]. In terrestrial ecosystems, the availability of dietary n-3 LC-PUFA for
consumers generally decreases with the distance from aquatic ecosystems [10]. Together, the
heterogeneous spatiotemporal distribution of dietary n-3 LC-PUFA, a consumer’s physiological
dependence on n-3 LC-PUFA, and a consumer’s position along the synthesis and acquisition
trade-off create a strong selection gradient that can drive developmental and evolutionary
changes in traits that have a direct impact on ecosystem functioning (Figure 1).
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Glossary
Basal metabolic rate (BMR): energy
throughput of a resting endothermic
animal within its thermoneutral zone, in
the absence of any spontaneous activity,
digestive or growth costs, and
physiological or psychological stress.
For ectotherms, the term standard
metabolic rate is equivalent, but it is
specific for a given temperature.
Eco-evo-devo dynamics: integration
of ecological, evolutionary, and
developmental processes that highlights
the importance of ecological pressures
that shape phenotypes of organisms,
and the influence that these phenotypic
changes have on community structure
and ecosystem functioning.
Ecological keystone genes: genes
that have large and disproportionate
effects (relative to all genes or alleles in
the environment) on community
structure and ecosystem processes by
altering the functional response and
effect traits of organisms.
Functional effect traits: the
characteristics of an individual that affect
ecosystem functioning. Traits such as
consumption rate, excretion rate, or
organismal stoichiometry define the
per-capita ecological impacts of an
organism.
Functional response traits: the
characteristics of an individual that result
from its response to environmental
conditions. Traits such as somatic
growth, gonadal development, or
cognitive capacity define fitness of an
individual and have direct consequence
for reproduction, mortality, and growth
rate of the population. They can
influence ecosystem functioning via
density-dependent effects.
Information processing capacity of
brain: the rate at which a brain can
process sensory cues and transform
them into a memory or behavioral
response.
Internal synthesis: enzymatic
synthesis of vital biomolecules from
precursors that are more readily
available in the diet of the consumer.
Membrane lipids: lipids forming the
lamellar lipid phases of cell membranes
containing a hydrophilic polar head
group, a central group (glycerol or
sphingosine), and hydrophobic long
hydrocarbon chains.
Omega-3 long-chain
polyunsaturated fatty acid
(n-3 LC-PUFA): Fatty acids with 20 or
more carbons in their acyl chain, with
Ecological keystone genes for synthesis of n-3 LC-PUFA
Ecological keystone genes are those with disproportionately large effects on community and
ecosystem functions, andmost of the known examples of ecological keystone genes are species
specific [42], for example, genes for rapid leaf litter decomposition in a flowering evergreen tree
Metrosideros polymorpha [43]. The increasing knowledge of genetic mechanisms leading to
the synthesis of n-3 LC-PUFAs and other vital biomolecules across taxa [24,44–46] provides a
unique opportunity to study the impact of ecological keystone genes in whole communities of
consumers. The capacity of consumers to synthesize n-3 LC-PUFAs [e.g., docosahexaenoic
acid (DHA) and eicosapentaenoic acid (EPA)] from the short-chain alpha-linoleic acid (ALA) is
determined by the function of multiple independent synthetic pathways regulated by genes for
two sets of enzymes, fatty acyl desaturases (Fads) and elongase (Elovl) [45,46]. In vertebrates,
evidence suggests that duplication and neofunctionalization of the genes coding different types
of these enzymes have repeatedly led to evolution of fully functional synthetic pathways [46].
The genetic architecture of fatty acid synthesis in invertebrates is more diverse than in vertebrates,
but still poorly understood [44,45].

Much of the empirical evidence on the evolutionary dynamics of n-3 LC-PUFA synthesis in natural
systems is currently based on comparison of populations and closely related species of fishes
such as three-spined sticklebacks (Gasterosteus aculeatus) [11–13] or American sole fishes
(Achiridae) [47]. These studies have shown that colonization of habitats with lower availability of
dietary n-3 LC-PUFA is associated with increasing number of copies of Fads genes, facilitating
higher synthesis of n-3 LC-PUFAs [11–13,47]. Evolutionary changes in genes regulating n-3
LC-PUFA synthesis could affect communities and ecosystems by shifting functional effect and
response traits of consumers [36,48] (Figure 1), therefore Fads and Elovl genes are strong
candidates for ecological keystone genes [42].

Omega-3 LC-PUFA-deficient food sources increase basal metabolic rate of
consumers
Foraging on prey deficient in n-3 LC-PUFA is likely to increase metabolic rates of consumers, due
to an increased need for internal synthesis of these vital biomolecules and reduced energy
production efficiency of mitochondria deprived of n-3 LC-PUFA. Synthesis of n-3 LC-PUFA
from dietary precursors has metabolic costs associated with elongation and desaturation of
ALA and the maintenance of the enzymatic apparatus [36,41]. In addition, a low n-3 LC-PUFA
content in membrane lipids in vertebrates has been shown to reduce energy production efficiency
of mitochondria, and therefore, consumers require more O2 to produce ATP [49,50]. Low n-3 LC-
PUFA content in mitochondrial membranes can also lead to elevated production of reactive
oxygen species, resulting in high oxidative stress and shorter consumer life spans [51]. These cel-
lular-level processes can then influence the metabolic rate of the whole organism as n-3 LC-
PUFA-deficient diets have been shown to increase the basal metabolic rate (BMR) of some
consumers [28,52]. However, we know of no studies testing the link between cost of n-3 LC-
PUFA synthesis and BMR on the evolutionary scale across species. McNab [53] showed that
across 533 bird species, mass-specific BMR decreases from species feeding on nectar and
nuts, to omnivores, to insectivores to species feeding on vertebrates. While the McNab [53]
study was not designed to test the effect of the n-3 LC-PUFA synthesis on BMR, its results
are in line with the assumption that BMR might be higher in species adapted to n-3 LC-PUFA-
deficient diets. The BMR of consumers is often positively related to key functional effect traits
such as food intake rate [54] and excretion rate [55]. High BMR also reduces the amount of
energy that can be invested in somatic and gonadal growth, especially under food limited
conditions [56]. Reduced growth rate and elevated excretion rate could also influence organismal
stoichiometry of consumers by increasing C:N and C:P ratios [57]. Altogether, through its effect
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multiple double bonds between carbon
atoms, the first of which is located
between the third and fourth carbons
from the terminal methyl end.
Vital dietary biomolecules:molecules
of biological origin such as structural
fatty and amino acids, vitamins, and
sterols that play key roles in tissue
formation and physiological
performance. Dietary biomolecules are
acquired fromdiet, and consumers differ
widely in their physiological dependence
on them and their capacity to synthesize
them internally from precursor
molecules.
on BMR of consumers, n-3 LC-PUFA synthesis has the potential to alter trophic interactions and
fluxes of element nutrients in the ecosystem.

Foraging morphology and behavior affect intake of n-3 LC-PUFA
As food sources rich in n-3 LC-PUFA are heterogeneously distributed within and across
food webs [7,30,58], their acquisition requires specific morphological and behavioral foraging
adaptations. For example, among insectivorous birds, aerial predators such as tree swallows
(Tachycineta bicolor) regularly prey on n-3 LC-PUFA-rich aquatic insects around riparian areas
[59], but species from other avian feeding guilds (e.g., leaf gleaners) do not use this dietary source
of n-3 LC-PUFA even when aquatic insects are readily available [10]. Many aquatic consumers
have developed specific behavioral adaptations to facultatively forage for fish eggs during the
spawning period of species producing large egg numbers, for example, red drum (Sciaenops
ocellatus) [8] and brown trout (Salmo trutta) [60]. This behavioral adaptation provides substantial
boost of dietary n-3 LC-PUFA to consumers that otherwise have limited access to n-3 LC-PUFA-
rich food sources [8].

Studies of sympatric radiations of arctic charr (Salvelinus alpinus) and whitefish (Coregonus spp.)
colonizing fishless post-glacial lakes demonstrate that pelagic morphological and behavioral phe-
notypes of these species colonize these lakes first [61] or rapidly evolve from littoral phenotypes
[62,63]. This suggests that these fishes may be under strong pressure to quickly colonize the
pelagic food web with access to n-3 LC-PUFA-rich prey to satisfy their physiological demands.
By contrast, phenotypes utilizing habitats with lower n-3 LC-PUFA availability (e.g., dwarf littoral
or profundal phenotypes) usually evolve later [61,64]. This evolutionary pattern could be driven
by the combination of competition for prey [65], predation pressure [66], and limited capacity of
these fish species to synthesize n-3 LC-PUFAs. By contrast, high capacity to synthesize n-3
LC-PUFA internally might be an important driver of preference for littoral habitat in species,
such as brown trout [67] or European perch (Perca fluviatilis) [65] that expand to the pelagic
part of the lake only under strong competition and predation pressure in the littoral habitat [66].

We suggest that the link between the behavioral and morphologic foraging traits and n-3 LC-
PUFA content in food sources is central for eco-devo-devo dynamics, because behavioral and
morphologic traits have high developmental plasticity [66,68]. This plasticity can rapidly translate
into reduced gene flow between phenotypes and evolutionary diversification of genotypes
[12,69]. This diversification of consumers along the n-3 LC-PUFA synthesis–acquisition trade-
off can impose new predation pressure on freshly colonized parts of the food web and influence
community structure and ecosystem functioning [70,71]. Furthermore, it has been shown that
shifts in community structure and prey phenotype can feed back to affect foraging morphology
and behavior of predators [72,73].

Dietary n-3 LC-PUFA and rapid changes in brain functioning
Omega-3 LC-PUFAs, particularly DHA, are indispensable for optimal functioning of neural tissues in
all vertebrates and in some invertebrates [27] (Box 1). Deprivation of n-3 LC-PUFA has negative ef-
fects on brain growth and neuron proliferation in laboratory studies on freshwater fishes [74],
marine fishes [75], amphibians [76], passerine birds [77], and rodents [78]. The number of neurons
and their connections in the whole brain is the best available determinant of the brain information
processing capacity [79], yet the effect of DHA on neuron numbers in the whole brain has not
been studied. Therefore, brain size remains a useful proxy of cognition in ecological studies.

Despite the large number of laboratory studies, there is only recent evidence suggesting that
dietary n-3 LC-PUFAs plays a key role in the brain growth of wild consumers feeding on natural
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prey [80], hinting at the large potential influence of variation in the n-3 LC-PUFA content of food
sources on cognition of consumers. Brain size is positively associated with the capacity of prey
to evade predators [81] and the capacity of predators to capture a broad variety of prey [82].
Therefore, developmental and evolutionary changes in the brains of consumers induced by
dietary n-3 LC-PUFAmight influence trophic interactions among organisms, shifting the selection
pressures in the entire food web [81,82]. However, it is worth noting that relatively large brains
with high neuron numbers have evolved among taxa with n-3 LC-PUFA poor plant-based diets
(e.g., parrots) as well as among taxa with n-3 LC-PUFA-rich marine fish diet (e.g., tooth whales)
[79]. Studies aiming to link food web structure and the evolution of the brain need to consider
changes in availability of dietary n-3 LC-PUFA together with the capacity of consumers to
Open ocean Coast

Availability of n-3 LC-PUFA in food source

Response traits Effect traits

acquisition

Low High
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Figure 1. A conceptual overview of how food source availability and a consumer’s physiological need for vital dietary biomolecules, specifically for omega-3
long-chain polyunsaturated fatty acid (n-3 LC-PUFA), affect the trade-off between their dietary acquisition and synthesis. Changes in a consumer’s functional effect
and response traits related to this trade-off feedback to the ecosystem functions (e.g., trophic transfer efficiency, primary production, nutrient turnover rates) that affect the availability
of vital dietary biomolecules.We provide a non-exhaustive list of examples of gradients in availability of n-3 LC-PUFA across different environments and spatial scales. Two examples
of hypothetical consumers are provided. Consumer 1 is an animal with high physiological need for n-3 LC-PUFA that lives in an environment with relatively low n-3 LC-PUFA avail-
ability (e.g., a herbivorous mammal with a large brain). To maintain high performance of their tissues, high fitness, and population growth, these consumers must evolve a relatively
high capacity to synthesize n-3 LC-PUFA. By contrast, consumer 2 has low physiological need for n-3 LC-PUFA and lives in an environment with relatively high n-3 LC-PUFA avail-
ability (e.g., marine gastropods). Such consumers acquire sufficient amount of n-3 LC-PUFA from their diet and have no need to invest energy in the synthesis of these molecules.
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Box 1. Cellular function of n-3 LC-PUFA

The most physiologically important n-3 LC-PUFAs for many consumers are DHA (22:6n-3) and EPA (20:5n-3) and their
short-chain precursor ALA (18:3n-3) [27,36]. LC-PUFAs increase the fluidity of cellular membranes due to their high
rotation potential given by high number of unsaturated double bonds and chain length [113]. The high rotation potential of
DHA has a critical role in signal transfer efficiency in neural tissues of virtually all vertebrates, and a large number of aquatic
invertebrates such as copepods, malacostraca, and cephalopods [27,36]. However, many freshwater invertebrates do
not have DHA in their membrane lipids and its function is provided by EPA [6]. Furthermore, terrestrial invertebrates contain
negligible amount of DHA and EPA and their neural tissue membrane lipid function is realized by ALA [114].

The importance of these fatty acids in the cellular structure of consumers means that these lipids are not primarily oxidized for
energy production, but are retained and incorporated into membranes or used for synthesis of n-3 LC-PUFA species required
by the consumer (e.g., synthesis of DHA from ALA and EPA by vertebrates) [46]. When consumers acquire more dietary n-3
LC-PUFA than needed tomaintain optimal functioning of cellular membranes, they can store them for later use as triacylglycerols
(TAGs) [115], retro-convert them to shorter chain (e.g., conversion of DHA and EPA to ALA by terrestrial insects [114] or DHA to
EPA inDaphnia [116]); or oxidize them to produce energy [117]. Because excess dietary n-3 LC-PUFAs are stored or used as an
energy source, an increase of n-3 LC-PUFA in diet above the physiological optimum is unlikely to improve functioning of
consumer’s cellular membranes and their fitness (Figure I) [38]. Excessive anthropogenic supply of n-3 LC-PUFAs (e.g., from ge-
netically modified crops; see Figure 2 in main text) to consumers that utilize ALA as dominant membrane lipid (i.e., terrestrial in-
sects) can cause developmental deformities [114], but the negative health effects of excessive n-3 LC-PUFA consumption
(i.e., oversaturation) are not known in natural ecosystems. By contrast, dietary intake of n-3 LC-PUFA below the physiological
optimum can have severe negative effects on the performance of consumers’ tissues and ultimately their fitness (Figure I) [27,36].
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Figure I. Hypothesized association between dietary intake of n-3 LC-PUFA and tissue performance, which
is critical for fitness of consumers.
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synthesize them. The availability of n-3 LC-PUFA in food webs can limit the potential for develop-
mental and evolutionary changes of brain information-processing capacity. This is because a
scarcity of dietary n-3 LC-PUFA in species with low capacity for their synthesis likely prevents a
6 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx
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rapid increase in brain size and neuron numbers under a selection pressure [83] and can thus limit
the construction of novel or altered behavioral patterns in response to new ecological challenges.

Life history of consumers drives the flux of n-3 LC-PUFA
Consumers that migrate from n-3 LC-PUFA-rich to n-3 LC-PUFA-poor food webs are critical for
transporting these molecules across ecosystems [34,35]. Examples of such transfers include
subsidies of marine-derived nutrients rich in N, P, and n-3 LC-PUFA to coastal streams and
lakes by anadromous fishes [84,85], or the movement of emergent aquatic insects [35,59] and
amphibians [34] from freshwater to terrestrial ecosystems. Changes in magnitude and phenology
of these cross-ecosystem fluxes may induce selection pressure on consumers in n-3 LC-PUFA-
poor food webs that depend on this supply [9,86]. For example, it has been shown that the earlier
emergence of aquatic insects that are rich in n-3 LC-PUFA, caused by climate change, is asso-
ciated with a shift in timing of reproduction of insectivorous birds depending on these subsidies
[9]. However, bird reproduction is not keeping pace with the peak of aquatic insect emergence,
which may be contributing to lower fitness and population declines in these insectivorous birds
[9,52,59]. Delivery of marine-derived nutrients rich in n-3 LC-PUFA by anadromous fishes to nursery
TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 2. Overview of the anthropogenic factors impacting the fluxes of omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) in food webs
(indicated as ECO effects) and factors impacting the position of consumers along the n-3 LC-PUFA acquisition–synthesis trade-off (indicated as EVO
and DEVO effects). Numbers in brackets represent to the corresponding case studies (see also [2,11,34,37,71,80,85,95,97,103–106,108–110]). Abbreviations: Fads,
fatty acyl desaturases 2; GMO, genetically modified organism; n-3 LC-PUFA, omega-3 long-chain polyunsaturated fatty acid.
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streams is crucial for stream food webs [85]. Therefore, while the n-3 LC-PUFA eco-evo-devo
dynamics has never been explicitly studied in this context, n-3 LC-PUFA may play a critical role in
the coastal freshwater food web dynamics. For instance, marine-derived nutrients delivered by
eggs and carcasses of spawning Atlantic salmon (Salmo salar) increase the biomass of aquatic
insect in the nursery streams [87,88], which in turn leads to increased biomass of the salmon
juveniles and weakens the selection pressure on their metabolic rates [88], aging rate [89], and
genetic diversity [87]. Finally, increased fluxes of marine-derived nutrients also reduce the age and
length of the seaward migration of juvenile salmon [87], which can ultimately reduce the number
of spawners returning to the nursery stream [90] and decrease the supply of marine-derived
nutrients to the following salmon generations. This could subsequently close the negative feedback
loop between the flux of n-3 LC-PUFA and phenotypic changes of salmon.

Dietary n-3 LC-PUFAs have a positive effect on growth of gonads [91] and body size [52,92] of
wild consumers, life history traits positively related to fecundity. Maternal provisioning of n-3
LC-PUFA is critical for growth, brain development, behavior, and survival of the offspring [93].
Therefore, offspring provisioning might lead to higher selection pressure on females to synthesize
n-3 LC-PUFA internally and thus buffer fluctuations in its availability in food webs. For example,
in three-spined sticklebacks, Fads2 copy number duplication occurs on the X chromosome
and, thus within populations, females have generally higher number of Fads2 gene copies
(i.e., higher capacity to synthesize n-3 LC-PUFA) than males [12]. In mammals, internal synthesis
of n-3 LC-PUFA increases in females during pregnancy and lactation [94]. Overall, evidence
suggests that the position of consumers along the n-3 LC-PUFA synthesis–acquisition trade-
off and availability of n-3 LC-PUFA in food sources likely have a direct influence on the number
of surviving offspring and population growth rate (Figure 1).

Anthropogenic impacts on the n-3 LC-PUFA eco-evo-devo dynamics
Anthropogenic pressures could disrupt n-3 LC-PUFA fluxes through food webs [95–98] and
induce evolutionary and developmental changes in consumer phenotype [99,100] (Figure 2).
Eutrophication, browning, and climate warming can reduce algal primary production of n-3
LC-PUFA, for example, by homeoviscous adaptation [2] and community assemblage shifts
(e.g., toward cyanobacteria) [37] and thus limit n-3 LC-PUFA fluxes to consumers at higher
trophic levels [95–97]. In some cases, food webs may buffer the reduced primary production
of n-3 LC-PUFA through increased synthesis of n-3 LC-PUFA of consumers at lower trophic
levels [101]. However, there is also evidence that n-3 LC-PUFA deficiency induced by eutrophi-
cation and climate warming can spill across multiple trophic levels [6,97], and could induce
developmental and evolutionary changes even in top consumers, such as fishes [102] or
humans [98]. Invasion of new species may also alter the flux of n-3 LC-PUFA through the
food web. For example, when an invasive species becomes a novel source of n-3 LC-PUFA
for native consumers [103] or limits the access of native consumers to n-3 LC-PUFA-rich
food sources via competition [80]. Reduced population density or extinction of harvested
species in fisheries can limit the flux of n-3 LC-PUFA though food webs [104]. By contrast,
discards from industrial fisheries [105] and outfall of feeds from cage aquaculture [106] can
become a significant anthropogenic supply of n-3 LC-PUFA to consumers in n-3 LC-PUFA-poor
food webs. Disruption of migration routes (e.g., by dams and roads) and habitat degradation
(e.g., pond and wetland drainage) can cause profound reduction of n-3 LC-PUFA subsidies from
freshwater to terrestrial [107,108] and from marine to freshwater [85].

Genetic modifications in aquaculture fishes aimed at increasing somatic growth and the capacity
to synthesize and retain n-3 LC-PUFA [100] can magnify the ecological impacts of individuals es-
caping from aquaculture into natural ecosystems due to their altered physiology and behavior
8 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx
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[71]. Crops genetically modified to produce n-3 LC-PUFA can negatively influence consumers in
terrestrial food webs as many terrestrial invertebrates are not adapted to consume n-3 LC-PUFA-
rich diets [109]. Harvest-induced evolution, especially in the context of industrial fisheries, alters
the physiological traits of consumers [110], and therefore it is foreseeable that this may also
alter their capacity to synthesize n-3 LC-PUFA internally and acquire n-3 LC-PUFA from diet,
but this remains to be tested. Similarly, genetic introgression of native consumers with non-
native lineages and species introduced by humans may affect the capacity of native consumers
to synthesize or acquire n-3 LC-PUFA from diet [11,111].
Box 2. Tracing pathways of vital dietary biomolecules

Stable isotope analysis (SIA) is the main analytical method for tracing sources of dietary energy and vital biomolecules,
usually using δ13C, δ15N, and δ2H [118]. The central assumption of SIA is that the isotopes in bulk tissues of consumers
reflect the isotopes in their diet (i.e., food and water) plus the metabolic activity of the consumer, which results in an
increase of δ13C, δ15N, and δ2H values, that is, fractionation (Figure I). Origin of individual biomolecules can be further
traced by compound-specific SIA (CSIA) [119,120]. This is an important method as the main food sources of energy
and vital biomolecules may not be the same [119]. Essential compounds, that is, vital biomolecules that cannot be
synthesized de novo by the consumer, closely reflect the isotopic value of their diet. By contrast, non-essential
compounds, that is, biomolecules that can be synthesized by consumer, show high isotopic fractionation (Figure I).

CSIA has been used to determine, for example, the critical minimal threshold content of n-3 LC-PUFA in diet that triggers
internal synthesis by consumers [101], or to estimate the turnover time of these vital biomolecules in tissues [121]. CSIA in
combination with genome sequencing and expression analysis of genes key to the internal synthesis (e.g., [13]) can
provide a robust insight into physiological capacity to synthesize different vital biomolecules in wild free ranging consumers
at intra- and inter-specific level. CSIA can also provide fine-scale information on spatial distribution of consumer’s foraging
habitats [122] and increase the precision of estimates of a consumer’s position within the food web [123].

SIA can also be combined with artificial isotopic labeling of vital dietary biomolecules using dietary substrates of known
isotopic composition [123]. Labeling enhances the differences in isotopes of biomolecules compared with the natural
dietary sources and thus can help to determine finer variability in synthetic capacity of consumers and distinguish among
vital biomolecules from dietary sources that do not differ isotopically at the natural abundance level. While isotopic labeling
has been primarily used in laboratory studies, it can be also used in open system to trace pathway of vital dietary
biomolecules in food webs [124] and within consumers [125].
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Figure I. Comparison of information provided by bulk tissue SIA and compound specific CSIA.
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Outstanding questions
How does the evolution of trophic niche
affect the capacity of consumers to
synthesize vital dietary biomolecules?

What is the energetic cost of synthesis
of vital biomolecules? Are there
energetic tipping points that delimit
when a synthesis strategy or a dietary
acquisition strategy is more favorable?

Is there a negative relationship between
genes associated with increased
capacity of consumers to acquire vital
biomolecules from diet and genes for
their internal synthesis?

What factors determine the direction
(reinforcing vs. balancing) of eco-evo-
devo feedbacks dominated by vital
dietary biomolecules?

How does the availability of inorganic
nutrients affect the trade-off between
synthesis and dietary acquisition of
vital dietary biomolecules?

How does the availability of n-3 LC-
PUFA, in particular DHA, correlate
with the rate of brain evolution within
and across species?
Concluding remarks
Emerging research on the ecological, developmental, and evolutionary roles of n-3 LC-PUFA
indicates that vital dietary biomolecules likely play critical roles within numerous eco-evo-devo
feedbacks. However, to date, most evidence is indirect, and often assumes that documented
changes in fluxes of n-3 LC-PUFA-rich subsidies within and across food webs, together with
changes in the capacity of consumers to acquire and synthesize n-3 LC-PUFA, are the dominant
drivers of such eco-evo-devo dynamics. Moreover, we lack knowledge about the specific
ecological and evolutionary role of vital dietary biomolecules in general because most eco-evo-
devo dynamic research has focused on fluxes of inorganic nutrients such as carbon, nitrogen,
and phosphorus (e.g., [43,57]). We therefore suggest explicitly integrating n-3 LC-PUFA and
other vital dietary biomolecules (e.g., vitamins [24], sterols [25], and amino acids [26]) into ecolog-
ically relevant experiments [112], eco-evo-devo models [23], and ecosystem management [108]
using a range of novel methodological tools (Box 2). This will help improve the conservation of
biodiversity and the mitigation of anthropogenic impacts. Tomeet this goal, wemust substantially
improve our understanding of the importance of vital dietary biomolecules for ecosystem
functioning (e.g., trophic transfer efficiency, primary production, nutrient turnover rates) and for
performance of wild consumers (see Outstanding questions).
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