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Marine and freshwater fisheries are more important than ever for sustaining human

populations but are also facing unprecedented threats from the combined effects of mul-

tiple environmental stressors. Here we review how the rapidly changing abiotic environ-

ment of fish may affect interactions between fish and fishers, at both the individual and

population levels. Throughout, we highlight the role of physiological mechanisms

underlying the sensitivity of fish to multiple stressors and their interactions with fishing

gears. For each step in a typical capture sequence, we discuss how stressors can alter the

behavioral and physiological mechanisms of capture and potential recovery after release
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or escape. We also consider possible feedbacks among fishing practices, environmental

stressors, and physiological response of fish, including the potential for harvest-

associated selection and evolutionary effects. Fisheries can also induce changes to the

biotic environment, including changes in population density, species interactions, and

prey density, which can in turn alter the physiology of individual fish, entire ecosys-

tems, and the fisheries themselves. We conclude by highlighting priority research areas

required to advance our understanding of the effects of multiple stressors on fish

physiology and behavior within the context of global fisheries.

1 Introduction

With the technological advances of fishing practices and gears, fishing has

transitioned from hunter-gatherer subsistence fishing to a consumptive global

commodity (Pitcher and Lam, 2015). Fish are still the primary protein source

for 17% of the world’s population and are among the most traded food com-

modities (FAO, 2019). Around the globe, a diversity of fishing practices exist,

spanning from recreational hook and line fishing and small-scale artisanal

fisheries to commercial fishing freezer vessels targeting inland and marine

species from the coast to open ocean. Together, with the industrialization

of commercial fishing (Finley, 2016) and the more recent diversification of

recreational fishing practices (Cooke et al., 2021), nearly all fish species are

directly targeted or indirectly impacted by some form of fishing practice

(FAO, 2020).

Single stressors may not have considerable deleterious effects on fitness

and survival of animals, but they may when occurring in combination with

other stressors. Multi-stressor effects are well known in ecotoxicological

research, where co-occurring pollutants can have synergistic effects, decou-

pling the effects of single chemical pollutants (Kimberly and Salice, 2015).

For instance, Monteiro et al. (2020) show the additive effects of hypoxic con-

ditions and mercury contamination, which often co-occur in neotropical fresh-

water ecosystems, causing the impairment of cardiac output of fish. The effect

of multiple stressors, in order to better capture the environments animals are

experiencing in the wild, are also increasingly studied in a broader ecological

context (see for, e.g., Halfwerk and Slabbekoorn, 2015 for a multi-modal

approach of sensory pollution; Fu et al., 2018; Hecky et al., 2010). In the

context of fisheries, research shows that the outcome of a fish-fishing gear

interaction is greatly impacted when interacting with other environmental

stressors. For instance, while fish may be able to adjust to fluctuating temper-

ature regimes, including temperatures temporarily exceeding their thermal

optimum ( Johansen et al., 2021), increased water temperatures can reduce

swim performance, possibly increasing the risk of capture by fishing trawls

(Hollins et al., 2018) or reducing recovery potential and chances of survival

after discard from a vessel (Gale et al., 2013).

In addition to direct fishing or harvest, fish increasingly experience a mul-

titude of other stressors that may interact with the physiological disturbance

176 Fish Physiology Volume 39B



caused during fishing, producing effects at various levels of biological organi-

zation (see other chapters in this book). To persist in a multi-stressor world,

fish need to physiologically adjust and/or adapt to new habitat characteristics

or shift to new habitats to meet their biological requirements and limit chronic

stress that may affect fitness and survival. Despite a wide range of existing

fishing gears and practices, all fishing gears exploit the natural behavior and

performance of fish, such that changes in fish behavior via environmental

effects on physiology, will affect the interactions between fish and fishing

gears. Being predominantly ectothermic, teleost fish are particularly sensitive

to changes in environmental temperature (Porter and Gates, 1969). Tempera-

ture changes near species’ maximum or minimum tolerance thresholds can

represent a major stressor causing impairment of cardiac and metabolic func-

tions, increasingly the likelihood of mortality, or producing sublethal effects

on physiological performance ( Jensen et al., 2017). Environmental hypoxia

is an increasing global concern in freshwater and marine habitats (Breitburg

et al., 2018), and in fish can have numerous effects including alteration of car-

diac function, oxygen delivery (Farrell and Richards, 2009), and spontaneous

swimming activity (Schurmann and Steffensen, 1994; Metcalfe and Butler,

1984). Sensory and chemical pollution are additional stressors which can

affect environmental cue perception (Halfwerk and Slabbekoorn, 2015),

increasing stress in fish and more generally disrupting biological rhythms

(Celi et al., 2016). Waterborne pharmaceutical residues of anxiolytic drugs

can affect the functioning of the central nervous system of fish by reducing

overall neurotransmission, which have shown to impact the migration propen-

sity of Atlantic salmon in riverine systems (Hellstr€om et al., 2016). Artificial

light at night in urbanized waters affects biological rythms such as sex ster-

oids and gonadotropin production (Br€uning et al., 2018), increases metabo-

lism and disrupts natural circadian rhythms in fish (Pulgar et al., 2019).

Changes to the physical environment of fish, such as water stratification,

currents, and water flow will additionally affect the sensory reach of environ-

mental cues by fish. Overall, not only may such multiple, co-occurring stres-

sors amplify or compound the physiological stress caused in fish during

fishing, but they may also affect the vulnerability of fish to various fishing

practices at both the individual and population levels.

In this chapter we outline, based on examples of existing fisheries but also

on knowledge of physiological processes gained from experimental work,

how changes of the abiotic environment of fish may affect the interaction

between fish and fishing gears interaction and ultimately shape the fisheries

of our world. This includes how within-generational plasticity to environ-

mental stressors may modulate vulnerability to fishing gears and the potential

for selection by fishing practices. This chapter is constructed based on the

consecutive steps of a fishing sequence, i.e., habitat selection, encounter, and

interaction of fish and gear, and capture. For each step, we outline how environ-

mental stressors modulate the corresponding behavioral and physiological
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mechanisms involved in the fish-gear interaction. Additionally, we discuss

possible feedback loops between fishing practices, environmental stressors,

and physiological response of fish. Beyond the direct impact of fishing

practices on population level mortality rates of a fish population, indirect

effects and sublethal effects are numerous and can affect fish populations

via mechanisms of selection, possibly producing transgenerational effects

(Hollins et al., 2018) and constraining adaptation to climate variability

(Morrongiello et al., 2019). While we focus on how abiotic stressors can

shape fish-fisheries interactions, there are likely to be numerous cascading

ecosystem-level effects. To this end, we discuss how modifications of species

interactions and food webs in response to environmental conditions can affect

fisheries, including interactions with the expansion of non-native species.

2 Habitat use and availability to fisheries

To be available to a fishery, fish must overlap in space and time with the gears

being used to capture them. This will largely depend on the habitat that the

fish occupy, either by active choice (e.g., choosing an area with a particular

prey) or by avoidance of areas outside of their abiotic environmental prefer-

ences or limits (e.g., avoiding areas above a temperature threshold). At the

narrowest spatiotemporal scale, fish make decisions on a moment-to-moment

basis about which microhabitat they will occupy. Conversely, range shifts can

occur at the scale of hundreds or thousands of kilometres over the course of

years, decades, or centuries. The exact causes of this variance in habitat use

is the focus of a great deal of research, and while in most cases these remain

elusive, habitat use by fish and their subsequent availability to fisheries is

likely to be influenced by a range of environmental factors that interact with

fish physiology.

2.1 Habitat selection and microhabitat use

Within and among fish species, there is wide variation in space use associated

with energy requirements, performance, and behavioral traits. For example,

factors such as water velocity, food abundance, predation risk, water depth,

temperature and oxygen availability may all affect microhabitat selection.

This has been well-studied in stream-dwelling salmonids, for example,

whereby individuals can face a trade-off between occupying faster flowing

waters with increased drift feeding opportunities but with greater energetic

costs while holding station, and lower flow areas where less energy is spent

on swimming but where there is less prey availability (e.g., Fausch et al.,

1997). Intrinsic variation in risk-taking tendency, spontaneous activity, and

exploration will also influence space use of fish, and these behavioral traits

can show context-dependent links with various aspects of physiology includ-

ing metabolic rate, locomotor performance, and hormone status (although see
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Baktoft et al., 2016). Individuals that are inactive or spend more time in shel-

ter, for example, tend to be those with a lower metabolic rate and increased

stress-responsiveness (Metcalfe et al., 2016). In turn, these individuals may

be less likely to encounter passive fishing methods such as traps or anglers

because these depend on the fish to encounter and interact with the largely

stationary gear (Hollins et al., 2018). As such, the associated fisheries-

associated selection could possibly generate a “timidity syndrome” among

the population of fish that remain uncaptured (Arlinghaus et al., 2017). Nota-

bly, however, the links between habitat use and vulnerability may be highly

dependent on the type of gear being used. More active gear such as seines,

for example, may be more likely to capture shy individuals or those in

shelters, because they are less likely to escape the path of the net (Wilson

et al., 2011).

Factors such as temperature and hypoxia can have independent and com-

bined effects on the metabolic rates and aerobic capacity of fish (Claireaux

and Chabot, 2016; Claireaux et al., 2000) and it is likely that, via effects on

behavior, these factors will affect habitat use and the potential to encounter

deployed fishing gears. Temperature, for example, has strong effects on

foraging activity and choice of depth of occurrence in Arctic char Salvelinus
alpinus, likely affecting their ability to be targeted by specific gear types in

relation to the prevailing environmental conditions (Guzzo et al., 2017).

Importantly, however, the exact effects of these environmental factors on

habitat use will depend greatly on the magnitude of the change in conditions

in relation to the “baseline” conditions, and over what time scale (Evans,

1990). For example, if an increase in temperature increases spontaneous activ-

ity in fish, there may be an increasing their space use and the likelihood of

encountering a fishing gear. With acclimation, however, metabolic compensa-

tion will occur and activity will partially return to the level that occurred at

the cooler temperature (Evans, 1990). At extremely high temperatures beyond

a species’ thermal optimum, such as that which can occur during heat waves

(Mameri et al., 2020), activity may actually decrease if fish experience neuro-

muscular dysfunction or a diminished aerobic capacity for activity or diges-

tion (and hence foraging). Hypoxia can have similarly variable effects on

behavior: while mild hypoxia can decrease shelter use and exploration, espe-

cially for those with a high metabolic rate, severe hypoxia can suppress vari-

ation in activity among the majority of individuals and thus alter vulnerability

to specific gear types at the population level (Killen et al., 2012).

Variation in depth preference among species or individuals will also

influence their spatial overlap with fishing gears and can also be related to

physiology. In warmer years, for example, some species will occupy greater

depths with cooler water, or individuals with a general preference for cooler

temperatures may consistently prefer deeper environments (Guzzo et al.,

2017). In Atlantic cod Gadus morhua, the tendency for diel vertical migration

is a repeatable trait, and individuals that make periodic migrations to
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shallower depths are more likely to be captured by passive fishing gears as

compared to those that stay in deeper water (Olsen et al., 2012). Targeted fish-

ing on depth-associated phenotypes has been shown to cause changes in allele

frequencies in exploited Atlantic cod populations (Árnason et al., 2009).

Climate-associated hypoxia is also expected to restrict the depth of many

pelagic species to more well-oxygenated surface layers. In blue sharks, for

example, a shallower oxygen minimum zone associated with warmer has

caused a decrease in dive depths, essentially compressing their vertical distri-

bution in the water column, and increasing their catch rates by long-line

fisheries (Vedor et al., 2021).

2.2 Range shifts

At broader spatiotemporal scales, interactions between the environment and

fish physiology are already altering the habitable ranges of economically

and ecologically valuable species. Overall, there is a general trend toward

more poleward distributions of species or a shift to greater depths (Dulvy

et al., 2008; Gaines et al., 2018). Although models that incorporate physiolog-

ical mechanisms predict a continuation of these trends (Cheung et al., 2011),

there is significant controversy regarding the exact physiological mechanisms

underlying such shifts. The oxygen and capacity limited thermal tolerance

(OCLTT) hypothesis, for example, has posited that constrained aerobic scope

at temperatures beyond a thermal optimum should limit species’ capacity for

activity, growth, and reproduction, and therefore limit their geographical

range (P€ortner and Knust, 2007; P€ortner et al., 2017). While this basic princi-

ple has been a component of attempts to model future ranges of fish species,

the empirical evidence for these effects is mixed. For example, there are very

few species for which adequate physiological data have been collected to

effectively model changes in aerobic scope with temperature (Nati et al.,

2016), and among those species that have been studied, many show no obvi-

ous optimum temperature for aerobic scope (Lefevre, 2016). Further attempts

to model the geographical distribution of fish species have included interac-

tions between temperature and oxygen availability to derive estimates of a

metabolic index that generally coincides with the current distributions of

species for which sufficient physiological data is available (Deutsch et al.,

2015, 2020). While this work highlights that the physiology of fish species

is likely critical in determining the geographical range of species in response

to stressors, there remain many unknowns in this area. For example, even if

current modeling approaches predict that a species could inhabit a given range

given their responses to temperature, additional stressors including food or

habitat availability may render an area unsuitable.

Ongoing and future changes in the range distribution of species will

strongly impact fisheries. Commercial fishers may need to relocate fishing

efforts to follow the population, possibly spending more time in transit to

and from fishing grounds, or shift efforts to other species. Relocations of
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fisheries in the northeast United States, for example, have shown a tremen-

dous time lag relative to the range shifts of their targeted populations

(Pinsky and Fogarty, 2012). It should be noted that while temperate and trop-

ical fisheries are generally predicted to decline in response to future climate

changes, fisheries in polar regions may actually experience an increase in pro-

ductivity (Campana et al., 2020), though species interactions between native

species in these areas and an influx of species experiencing range shifts is

unknown. It is also important to note that, to date, the vast majority of

research has focused on marine species while changes in the habitable shifts

of freshwater species remains relatively unknown. This is a major area for

future research given the large human populations across South America,

Africa, and Asia, that are dependent on freshwater fisheries and are in geo-

graphical areas predicted to be strongly impacted by warming.

3 Gear encounter and interaction

Even if a fish and fishing gear are in the same general location at the same

time, there are numerous environmental, physiological, and behavioral factors

that will determine whether a fish encounters and interacts with the gear

(Lennox et al., 2017). Encounter rates are modulated by fish activity such that,

depending on the specific gear being used, more active individuals may be

more likely to encounter a deployed gear within their home range or core

activity spaces. Larger home ranges will also increase the probability of a fish

overlapping with the active space of a gear across space and time. Active,

compared to passive, fishing gears have different modes of function such that

passive gears are more reliant on the activity rates of the fish than active

gears, which actively pursue fish. In addition, passive gears may require the

fish to be stimulated to interact, relying on the behavior and physiology of

the individual to compel it to the gear. Here, we briefly review how stressors

can enhance or reduce the rates at which fish become vulnerable followed by

an assessment of how stressors affect the nature of these interactions between

fish and fishers.

Catchability and availability are population-level traits relevant to fisheries

that are modulated by the behavior and physiology of individuals (Arreguı́n-

Sánchez, 1996), rendering them vulnerable or invulnerable to capture. Vulner-

ability is an unobservable individual trait that only becomes confirmed once a

fish interacts with a gear. The internal state of the animal must be such that

it is physiologically and behaviorally primed to be captured, in other words,

something is motivating the individual to move or feed in an area where gear

is active. Fish that are hiding or satiated are generally not vulnerable to gear

and will not encounter or interact with gear. Fish that are hungry and at ease

in their environment are expected to be readily vulnerable to fisheries. Within

a population, individual variation in metabolism (Redpath et al., 2009), bold-

ness (Redpath et al., 2010), sociality (Louison et al., 2018), and other traits

will determine the activity levels and risk taking of fish, including relevant
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traits such as flight initiation distance, risk tolerance, etc., that affect the indi-

vidual’s response to stressors and vulnerability to capture.

When an animal’s environment shifts, their physiology undergoes

corresponding changes that affect the individual’s likelihood of encounter-

ing or interacting with fishing gear. The effects of such stressors are

threshold-dependent, such that individuals and species may have tolerance

limits that enhance performance up to an optimum before decreasing perfor-

mance, with consequences for their vulnerability to fisheries capture. Extreme

environmental stressors such as high temperature or hypoxia, for example,

shift the animal’s physiology and will alter habitat selection or behavior.

Van Leeuwen et al. (2021) showed how warm water temperatures in rivers

affect catches of Atlantic salmon, implying that the environmental change

affected the interaction of fish with the fishing gear. Migrating salmon are

not feeding and are perhaps a special case, but similar effects can be antici-

pated when fishing with passive gears that rely on the fish’s volition to be

captured. Angling, longlining, fyke netting, and other traps should therefore

have reduced efficacy in extreme weather. Active gears, however, may

experience enhanced catch when individuals are beyond their physiological

optimum and less able to escape gear such as trawls, unable to move as well

to avoid capture. Killen et al. (2015a,b) demonstrated how anaerobic capacity,

which may be reduced at warm temperatures for fish, affects trawl captures

and Thambithurai et al. (2019) revealed similar patterns for environmental

hypoxia. Taken together, fish living in rivers, lakes, and coastal zones where

water temperatures are increasing with climate change should be increasingly

vulnerable to active gears and decreasingly vulnerable to passive ones. Areas

of the deep sea where oxygen minimum zones are rising may also yield less

reactive fish that are more easily trawled. Acidification caused by acid rain

in freshwater and warming on reefs may also affect swimming performance

and vulnerability to fisheries in these highly exploited environments. Environ-

mental pollutants may have variable effects on fish, with stimulants such

as anxiolytic drug effluents stimulating behavior that would enhance gear

encounters and vulnerability (Brodin et al., 2013). Other pollutants, such as

noise, repel fish from affected sites and can be expected to reduce gear

encounter rates proximate to the source, reducing gear encounter and capture

probabilities (Filous et al., 2017). Koeck et al. (2020) showed that memory

and learning play a key role in a population’s vulnerability to capture but this

probably also competes against food availability and hunger. Stressors that

increase hunger or shorten memory retention in fish may have profound

effects on their willingness to explore and interact with gear.

4 Capture and escape or release

Despite the diverse range of fishing gears across fisheries sectors, fish cannot

be captured without causing some level of injury or stress which can interact
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with various environmental stressors, possibly leading to immediate or

delayed mortality after release or escape (Fig. 1). The number of fish that

are released to comply with fisheries regulations, the conservation ethic of

the fisher (e.g., as is common with voluntary catch-and-release in recreational

fisheries) or because of a lack of market value (e.g., in some commercial fish-

eries), is by no means small. In the recreational sector alone, Cooke and Cowx

(2004) estimated that as many as 30 billion fish may be released on an annual

basis. Understanding the fate of fish that are released and developing strate-

gies to reduce injury, stress, and mortality are thus of high priority to fisheries

managers and fishers alike, especially in the face of numerous concurrent

FIG. 1 Flow chart of the potential disturbances, mediators of physiological stress, and potential

fish fates occurring throughout an angling event in a recreational fishery. Question marks high-

light areas where the cumulative effects of numerous stressors on the potential for recovery after

release are largely unknown.
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environmental stressors which may exacerbate the physiological stress experi-

enced during capture or impair recovery. Although it is common to think of

fishing in terms of fish that are captured and released, fish can also interact

with fishing gear and escape without being landed. For example, a fish could

escape from a commercial gill net or break the line when being reeled in by an

angler (Chopin and Arimoto, 1995). These interactions can lead to sublethal

impacts and collateral mortality but are just beginning to be explored in many

fisheries (Falco et al., 2022), including interactions with various environmen-

tal factors. Here we consider the physiological consequences of different

aspects of the fish capture process and the potential modulating effects of

additional environmental stressors. We preface this text by noting that given

the incredible diversity of fish species, fisheries techniques/gears, fisher beha-

viors, and environmental conditions that fish experience, our attempts to

generalize will always yield exceptions.

4.1 Interactions with fishing gears

From the moment a fish is hooked, entrapped, or entangled, there is a neuro-

endocrine cascade that leads to a stress response and associated physiological

adaptations (Barton, 2002). Fish will first attempt to escape and may pull on

the line, struggle in a net, and/or search for an escape path from a pursuing

gear. Beyond activation of the HPI axis, fish will often engage in high inten-

sity locomotor activity that includes burst swimming. Burst swimming is

fueled by anaerobic metabolism so tissue energy stores such as ATP, glyco-

gen and PCr are rapidly depleted leading to an oxygen debt and state of

physiological exhaustion (Kieffer, 2000). Warmer acclimation temperatures

and exposure to hypoxia can both alter liver and muscle glycogen levels,

possibly affecting the times needed for fish to become exhausted (Yang

et al., 2015). At the same time metabolites accumulate in tissues and

acid-base imbalances occur creating metabolic acidosis (Wood et al., 1983).

Rapid depletion of tissue energy stores, and associated acidosis in fish tissues

generally coincides with the onset of fish exhaustion but does not necessarily

equate to fish capture. For fish caught on rod and reel, the onset of fatigue

prevents fish from further resisting capture, after which point they are easily

landed. However, fish caught on longlines or in gill nets may show repeated

incidences of struggle and recovery throughout these gears’ soak times

(Guida et al., 2016), while exhausted fish pursued by a trawl often escape

capture by passing under/over the net mouth (Ryer, 2008).

Increases in water temperature and reductions in oxygen availability will

likely increase the rate of energetic resource depletion and the onset of acido-

sis in fish tissues as they attempt to escape or unhook themselves from fishing

gears (Gale et al., 2013), exacerbating stress responses and subsequent physi-

ological disruption. In the case of rod and reel fisheries, environmentally-

induced reductions in swim performance (e.g., Domenici et al., 2013) may
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decrease the fight times of angled fish in certain instances, although fish can

sometimes be landed before such severe physiological disruptions occur (Shea

et al., 2022). In contrast to rod and reel fishing, the extended soak times of

longlines or gillnets mean that there is greater opportunity for the extended/

repeated struggling of caught fish to cause significant disruptions to fish

homeostasis, with potential consequences for both recovery after release/

escape (see below), and fish condition upon the retrieval of the gear. Physio-

logical disruptions likely exacerbated by high temperatures and reduced oxy-

gen availability, such as elevated lactate and decreased blood/tissue pH, are

often associated with reductions in meat quality from harvested fish (Anders

et al., 2020). Under future climate change scenarios, minimizing the stress

experienced by commercially important fish species may become increasingly

important. In future, fishers may need to evaluate the tradeoffs between lost

income due to declining fish condition, and the relative cost of performing

multiple, shorter gear sets to try and reduce the severity of physiological

disruptions of target fish.

4.2 Handling

Once a fish is landed, how it is handled can play a large role in the ultimate

outcome of the fishing interaction for the fish. In some cases a fisher may

reach down into the water and slide out the hook or cut the line without bring-

ing the fish into a vessel or onto shore. In such instances, handling is negligi-

ble but to do so may require a fish that is already exhausted from the fishing

interaction (e.g., an angler using a protracted fight time to enable exhaustion).

However, it is more common for a fish to be fully landed whereby they

are brought into the “possession and control” of the fisher (e.g., in a landing

net, on a boat deck, in the hands of the fisher, or on shore). In some cases, fish

are crowded in nets (e.g., a purse or beach seine) at time of landing, which can

lead to localized depletion of dissolved oxygen (i.e., hypoxia) and stress

(Tenningen et al., 2012). It is common for fish to be exposed to air during

handling. Air exposure is not surprisingly a rather severe stressor for fish

characterized by collapse and adhesion of gill filaments, severe bradycardia,

inability to respire, and a host of biochemical alterations. Beyond some

threshold tissue damage arising from lack of oxygen is so severe that a fish

will die. In a synthesis of air exposure studies, Cook et al. (2015) suggested

10s as a conservative, cross-species and context value for a suggested

maximum air exposure target when species- or context-specific values are

unavailable. In some cases, this is easily achievable but in other cases such

as challenges with removing fish from the gear, fisher inexperience, or the

volume of fish that need to be sorted and handled (e.g., in non-selective gears

such as seines where fish are landed en masse), air exposure can last 20min or

more (Raby et al., 2012). Such durations may not necessarily be injurious but

require research to understand outcomes and best practices for handling such
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situations, and the effects of other additional stressors such as thermal history

and prior oxygen availability (e.g., hypoxia during the time of capture).

In trawl fisheries, air-temperature during on-deck sorting may strongly

affect the degree of physiological stress experienced by fish, and so warming

conditions or heat-waves may cause an increase in the mortality that occurs

during this stage of the fishing process.

4.3 Recovery and fitness impacts

When fish are released after capture they can be in a range of physiological

conditions. Some fish are able to maintain equilibrium and are vigorous while

others are near death and unable to swim (Davis, 2010). Even fish that are

able to swim may experience cognitive impairments that lead to them having

difficulty in assessing risk and making risk averse decisions (Cooke et al.,

2014). Fish with locomotor impairments may be subject to predation (Raby

et al., 2014). Some researchers have evaluated different tactics for facilitating

recovery of exhausted fish in an attempt to expedite physiological recovery

and reduce mortality. Farrell et al. (2001) showed that use of a recovery

box allowed coho salmon that were classified as lethargic to be vigorous as

little as 15min later (with accompanying recovery of tissue energy stores)

while Brownscombe et al. (2013) restored locomotor activity of bonefish

by temporarily holding them in flow-through recovery bags. Yet, the science

is mixed and in other instances there is little evidence that recovery can

be facilitated (e.g., Robinson et al., 2013). In other words, it is much better

to ensure that fishing and handling practices are optimized such that fish

are not exhausted at time of release than trying to facilitate recovery of

exhausted fish.

The mechanisms by which fish die after release or escape are varied. Some

fish that are bleeding may survive long enough to be released but die later.

However, minor injuries such as scale loss or abrasion can in time (days to

weeks) provide an entry route for opportunistic pathogens such that fish can

die well after release. Given that stress such as that arising from capture

and handling can also impair immune function (Tort, 2011), such minor inju-

ries can turn into major infections. In some cases, fish are sufficiently

exhausted that they are unable to recover, presumably due to tissue oxygen

limitation and associated damage to the heart and/or brain (Farrell et al.,

2009) or because of extreme acid-base imbalance (Wood et al., 1983). As

noted above, if fish are exhausted and unable to escape from predators then

they can be killed by predators, while exhausted fish which are obligate

ram-ventilators may be unable to sufficiently oxygenate their gills through

swimming, preventing recovery. While rates of recovery from exhaustive

exercise show a large degree of variation among ecologically distinct species,

elevated temperatures are typically associated with elevated metabolic debt

after exercise, as well as increased rates and occurrence of post release
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mortality in released fish (Clark et al., 2017). Specifically, elevated tem-

perature and hypoxic conditions during recovery can slow recovery of intra-

muscular ATP, PCr, and lactate, and plasma levels of glucose following

exhaustive exercise (Suski et al., 2006). For example, Wilkie et al. (1996)

revealed that angling of Atlantic salmon in warm summer water impairs

restorative processes and increases the susceptibility of Atlantic salmon to

delayed post-angling mortality. Under continued warming scenarios, the prob-

ability of and rate of recovery after exhaustive exercise may be lowered in

fish, potentially elevating both post release mortality, and rates of depredation

in future (Gale et al., 2013). In addition to the impact of capture and handling

stress, environmental temperature has also been shown to directly influence

the efficacy of fish immune response. While low temperatures are known to

inhibit fish immune response (Butler et al., 2013), elevated temperatures can

both reduce the immunocompetency of fish, as well as increase proliferation

of pathogens (Shameena et al., 2021).

Although mortality is the outcome of greatest concern to fisheries

managers, sublethal impacts can also be relevant to fitness. For example,

stress associated with fishing that occurs prior to or during reproduction

may suppress reproductive hormones (Pankhurst and Dedualj, 1994), delay

reproduction (Ostrand et al., 2004), impede spawning migration (Thorstad

et al., 2007), influence gamete development (Hall et al., 2009) or offspring

quality (Ostrand et al., 2004), impair parental care (Kieffer et al., 1995), and

even reduce reproductive success (Richard et al., 2013). Reproductive indica-

tors related to fitness are challenging to study in wild fish but these aforemen-

tioned examples suggest that more research is needed. Other fitness impacts can

occur as a result of feeding impairments (Siepker et al., 2006) or other pathways

that impact growth (Meka and Margraf, 2007) although compensatory growth is

common (Cline et al., 2012).

5 Feedbacks between fisheries and stressors

In addition to the effects on individual fish that have so far been described in

this chapter, fisheries have wide ranging impacts on exploited ecosystems,

and fishing is itself a “multi-stressor,” potentially causing pervasive, sublethal

impacts to fish populations with consequences for species of both commercial

and recreational interest (Fig. 2). For example, while fisheries harvest is a

direct source of mortality for many fish species, the concurrent destruction

of critical habitat (Wheeler et al., 2005) and associated noise of vessel traffic

(Celi et al., 2016) which also occurs, each constitute additional stressors in

their own right. Furthermore, the selective nature of fisheries harvest has

likely altered the life history (Heino et al., 2015), behavioral (Uusi-Heikkil€a
et al., 2008) and physiological (Hollins et al., 2018) traits of exploited

fish populations, with potential consequences for their capacity to adapt to

the other stressors discussed in this chapter (Crespel et al., 2021a).
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The following section discusses the indirect stressors fisheries activity exert

on fish, and the role that fisheries harvest may play in limiting the adaptive

potential of exploited fish populations to further environmental disturbances.

Fishing practices may directly alter habitats in a way that increases the

stress experienced by fish living within a given region. For example, demersal

trawls can clear large swathes of structured, complex benthic ecosystems

which provide critical sheltered habitat for fish species (Koslow et al.,

2001; Kritzer et al., 2016; Yesson et al., 2017). In addition to potentially

depriving fish of habitat-structure necessary to complete critical life history

functions (Caddy, 2008), lack of adequate shelter can increase the risk of pre-

dation in demersal fish species (Brooker et al., 2013; Quadros et al., 2019),

potentially leading to sublethal stress effects which can impact individual

fitness. For example, a lack of available shelter has been shown to increase

measures of basal metabolic demand in fish (Chr�etien et al., 2021; Millidine

et al., 2006), potentially due to increased costs of vigilance (Killen et al.,

2015b). These increased metabolic costs may reduce resources available for

growth and reproductive investment, with subsequent reductions in fitness

or capacity to adapt to further stress, or otherwise increase energetic demand

in a resource limited environment. Fishing activity can also induce further

stress responses by exposure to vessel noise, which has been shown to elevate

metabolic demand and heart rate in exposed fish (Graham and Cooke, 2008;

Simpson et al., 2016), as well as increasing circulating levels of biochemical

stress indicators (Celi et al., 2016). Cumulatively, these indirect-fisheries

stressors may contribute to reductions in fitness of wild fish populations

FIG. 2 Potential feedbacks among environmental variables, fish, and fisheries practices. Various

abiotic and biotic factors will have direct and indirect effects on the physiology and behavior of

fish. This includes natural environmental variation but also anthropogenic stressors. The physio-

logical state and behavior of fish will determine their vulnerability to being captured as well as

the physiological stress they experience during the capture process. The fishing process itself

will then feedback to affect environmental conditions, especially due to noise, pollution, habitat

degradation, and changes in the population densities of targeted species. These alterations will

go on to further modify fish physiology and behavior.
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inhabiting exploited ecosystems, with potential consequences for future fish-

eries yield. The potential fitness impacts of these indirect fisheries-stressors

have yet to be studied in the wild, but any observed impact would be difficult

to attribute to indirect effects of fisheries, as the selective nature of fisheries

harvest (Heino et al., 2015), and density dependent effects (Crespel et al.,

2021a,b) might also be expected to impact life history traits in similar ways.

Removal of fish from wild populations by fisheries harvest not only ele-

vates the mortality experienced by fish stocks, but can constitute a strong

selective pressure to which they must adapt (Heino et al., 2015). Where mor-

tality extends to immature life history stages in exploited fish populations,

fisheries harvest selects for individuals which can successfully reproduce at

earlier ages and smaller sizes (Enberg et al., 2012; Heino et al., 2015), driving

population level change in life history traits. Fisheries harvest is also selective

for specific life history (Heino et al., 2015), behavioral (Uusi-Heikkil€a et al.,

2008), and physiological (Hollins et al., 2018) traits in fish such that indivi-

duals exhibiting certain phenotypic traits are more likely to be caught than

others of the same species. If there is a heritable genetic basis for individual

traits which determine capture vulnerability in fish, these phenotypic changes

can constitute a true evolutionary response, in a phenomenon known as fish-

eries induced evolution (FIE). Fisheries harvest therefore has the capacity to

drive phenotypic change in exploited fish populations, with consequences

for the adaptive potential of those populations when faced with further envi-

ronmental stressors.

In addition to influencing population resilience and recovery potential

through impacts on life history traits, fisheries selection may also directly alter

the physiological traits present in exploited fish stocks (Enberg et al., 2012;

Hollins et al., 2018). Individual variation in physiological traits has been shown

to correlate with risk of capture in both active (Killen et al., 2015a; Hollins

et al., 2019) and passive fishing gears (Koeck et al., 2019; Redpath et al.,

2010) and has also been shown to underpin a range of behaviors which influ-

ence capture vulnerability (Andersen et al., 2016; Arlinghaus et al., 2017;

Diaz Pauli and Sih, 2017; Metcalfe et al., 2016). For example, angling was

shown to selectively remove individual rainbow trout with low neuroendocrine

stress responsiveness and high activity rates (Koeck et al., 2019), leaving an

uncaptured population composed of more stress-responsive, low activity indi-

viduals. Experimental studies have shown that active gears also have the

capacity to selectively remove individuals with specific physiological traits.

In a simulated trawl fishery, European minnow (Phoxinus phoxinus) with

greater anaerobic metabolic capacity were more likely to avoid trawl capture

(Hollins et al., 2019; Killen et al., 2015a,b) through a mechanism of higher

swim performance, suggesting physiological selection in trawl fisheries may

lead to fish populations with high anaerobic capacity and associated swim

performance. However, relationships between individual behavioral and phys-

iological traits and capture vulnerability in both active and passive gears have
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been shown to be highly context dependent (Hollins et al., 2019, 2021), as

these traits themselves show high plasticity (Killen et al., 2016). This makes

the net outcome of any physiological selection difficult to predict, as the dis-

tribution of traits within a population, and thus the potential for any selection

to occur, will be strongly mediated by environmental conditions. For example,

in low oxygen and high temperature conditions, swim performance in targeted

fish populations may be so reduced, and capture rates resultantly high, that

selection is effectively obviated (Thambithurai et al., 2019). Nevertheless,

many physiological traits show evidence of heritability (Ferrari et al., 2016;

Volckaert et al., 2012) and repeatability (Norin and Malte, 2011), as well as

correlations with other traits relevant in determining capture vulnerability in

fishing gears (Hollins et al., 2018; Metcalfe et al., 2016), or influencing

capture vulnerability in their own right (Hollins et al., 2019; Killen et al.,

2015a,b). Therefore, where the direction of fisheries selection on physiologi-

cal traits has been consistent (e.g., low activities and swim performances may

be consistently selected against in trawls; Diaz Pauli et al., 2015; Hollins

et al., 2019; Killen et al., 2015a,b; Thambithurai et al., 2019), resulting

phenotypic change in the physiological traits of exploited fish populations

seems possible.

Any fisheries-induced phenotypic change in physiological traits of wild

fish populations could have consequences for ecosystems and population

resilience to environmental disturbance/stress. For example, the physiological

traits of fish populations which experience heavy trawl fishing may be skewed

toward individuals with high anaerobic metabolic capacity, a trait which

is also associated with prolonged recovery times after exhaustive exercise

(Clark et al., 2017), but also resilience to low oxygen availability at high tem-

peratures (Sørensen et al., 2014). The impacts of severe ocean weather events,

such as localized extremes in temperature increase or oxygen deprivation

(Bates et al., 2018) may therefore be lessened in these fish populations. How-

ever, unlike aerobic metabolism, anaerobic metabolism cannot be sustained

for long periods due to continual accumulation of lactate and subsequent

onset of metabolic acidosis, a process which will be accelerated under condi-

tions of ocean warming (Clark et al., 2017). Shifts toward high performance

phenotypes as a result of fisheries selectivity may therefore have further

implications for fish species targeted by both trawls and catch and release/rec-

reational fisheries, (e.g., Atlantic cod), where the stress of capture/handling/

release may lead to higher rates of mortality under future climate change

scenarios. The distribution of physiological traits which determine baseline

energetic demand (e.g., standard metabolic rate) in fish populations may also

have been altered by fisheries selectivity owing to their likely role in deter-

mining behaviors related boldness and feeding motivation (Metcalfe et al.,

2016), and the relevance of those behaviors in determining capture vulnerabil-

ity in passive gears (Biro and Post, 2008; Lennox et al., 2017; Redpath et al.,

2010). The relative benefits/costs of high SMR are context specific (Norin and
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Metcalfe, 2019; Reid et al., 2012), but fish populations comprised of low

SMR individuals may be less able to translate abundant food resources or pro-

ductivity pulses into enhanced growth, potentially limiting biomass available

for fisheries harvest.

The role of aerobic and anaerobic metabolic traits in determining the fit-

ness and abundance impacts of future climate change on fish populations is

a contentious issue (Ejbye-Ernst et al., 2016), and so how fisheries selection

on physiological traits may interact with the environmental stress of climate

change is not clear. That being said, reductions in the diversity of traits pres-

ent within animal populations are expected to reduce overall population resil-

ience and limit the capacity for populations to adapt to environmental change

(Schindler et al., 2010). This destabilizing effect of fisheries selection may

exacerbate the impact of environmental stressors on wild fish populations,

and may underlie observations of exploited fish species showing greater dis-

tributional shifts in response to climate change than unexploited populations

(Hsieh et al., 2008).

The high mortality and often size-selective nature of fisheries harvest can

truncate size and age structure in wild fish populations (Enberg et al., 2009;

Kuparinen and Hutchings, 2012; Swain, 2011), which can lead to unpredict-

able recruitment success (Hsieh et al., 2006, 2010; Longhurst, 2002), and

possibly increase population susceptibility to concurrent environmental stres-

sors (Hsieh et al., 2006; Lehodey et al., 2006). Therefore, while these

population-level phenotypic changes may have limited direct impact on over-

all economic yield in fisheries in the short term, their implications for the

resilience of exploited fish stocks, and the capacity for those stocks to recover

should fishing effort cease, may be more severe (Eikeset et al., 2013; Enberg

et al., 2009; Kuparinen and Hutchings, 2012; (Swain, 2011)). For example, in

the Atlantic cod populations off southern Labrador and eastern Newfound-

land, Canada (hereafter “Northern cod”), fisheries induced reductions in size

at age were apparent by 1960 (Hutchings and Rangeley, 2011; Olsen et al.,

2004), but subsequent fisheries “collapse” did not occur until the 1980s and

1990s. In response to precipitous population declines, a moratorium on

targeted fishing for Northern Cod was implemented in 1992. Despite this,

Northern cod stocks have not recovered, and remain at approximately 2–3%
of their 1960 biomass (Hutchings and Rangeley, 2011). Evolutionary reduc-

tions in size at age, and earlier maturation have likely limited the rates of pop-

ulation growth in Northern cod through mechanisms of reduced population

fecundity (Hutchings and Rangeley, 2011; Swain, 2011), but are insufficient

to explain their lack of recovery in its entirety. Indeed, despite drastically

reduced fishing mortality experienced by the Northern cod population, overall

mortality has actually increased since the moratorium on fishing activity was

established (Swain, 2011). This elevated mortality is partially attributed to

increased post reproductive mortality in smaller cod (Hutchings and Rangeley,

2011; Swain, 2011), however, increased rates of predation, reductions in egg
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quality, and interactive effects between earlier maturation and challenging

environmental conditions (e.g., resource limitation) are likely even greater con-

tributors to sustained low Northern cod biomass (Hutchings and Rangeley,

2011; Venturelli et al., 2009).

The evolutionary legacy of the collapsed Northern cod population high-

lights how fisheries harvest can alter the demographic traits of exploited fish

populations, and also how these changes can cause synergistic ecosystem

interactions to further hinder population recovery. While overall alterations

to size at age and growth rate have clear implications for the reproductive out-

put and recovery potential of wild fish populations (Enberg et al., 2009, 2012;

Heino et al., 2015), truncated size and age structures of exploited fish

stocks may also render populations more vulnerable to the continued impacts

of climate change. The influence of environmental conditions on recruitment

success in fish populations varies, with some showing tight linkages with

variables such as temperature, while for others recruitment success is better

predicted by standing biomass, or age at maturity (Longhurst, 2002; Rindorf

et al., 2020). FIE impacts on these life history traits may therefore strengthen

links between climate and recruitment in heavily fished species, contributing

to more variable patterns of abundance over time (Hsieh et al., 2006)

and exacerbating the impacts of climate change on future fisheries yield

(Ottersen et al., 2013).

6 Environmental stressors, species interactions, and fisheries:
An example with the introduction of non-native species

Ecosystem structure may be altered by many factors, including interspecific

differences in response to a changing climate (Ainsworth et al., 2011;

Pinsky et al., 2020; Roessig et al., 2004), the introduction of non-native spe-

cies by human activities (Gozlan, 2017), and synergistic interactions between

the two. The continued impacts of climate change drive increases in water

temperature and acidity (Abraham et al., 2013), as well as the propagation

of aquatic oxygen minimum zones (Altieri and Gedan, 2015). The combined

effects of these shifting environmental conditions can constitute a significant

form of physiological stress for native fauna, and biodiversity within impacted

ecosystems may be altered as native fauna either leave the now disturbed

environment, or struggle to compete with species more readily adaptable to

changing conditions (Libralato et al., 2015). Community change in aquatic

ecosystems can also occur via competitive interactions between native species

and species introduced through human activity (Bando, 2006; Lovell et al.,

2006; Martin et al., 2010). Establishment of invasive species can lead to pop-

ulation declines of native species through competitive interactions (Martin

et al., 2010), but these interactions themselves will also be modulated by

the continued influence of climate change (Coni et al., 2021). Fisheries may

therefore be forced to continually adapt to the changing distributions/
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availability of traditionally targeted species, or otherwise target newly estab-

lished species of commercial value. The presence of invasive species also

constitutes a biotic stressor for native fishes, possibly influencing physiologi-

cal stress, habitat use, rates or energy intake, and predation, in ways that

interact with various abiotic stressors.

Where non-native species have a competitive advantage over native

species, or environmental conditions are otherwise no longer advantageous

to native species, the availability of target fish to a given fishery may change.

For example, the establishment of the invasive lionfish (Pterois spp.) in the

Caribbean has been implicated in declines of commercially important Atlantic

coral reef fish populations through both mechanisms of competition (Morris

et al., 2011; O’Farrell et al., 2014), and direct predation (Green et al.,

2012). While rapid somatic growth, a lack of predators, and an abundance

of naı̈ve prey have all contributed to the continued invasive success of lionfish

(Côt�e and Smith, 2018), lionfish also exhibit physiological tolerance to a

broad range of temperatures (Lower and upper critical thermal ranges of

9.5–16.5 °C and 30–40 °C, respectively) and salinities (daily fluctuations of

28%) (Barker et al., 2018; Jud et al., 2015), while also showing high starva-

tion tolerance (Fishelson, 1997). While these environmental tolerances are

comparable to those of native reef fishes throughout its introduced range,

predation pressure can limit the dispersal of native fish to habitats where

abundant shelter is available. As lionfish experience very limited predation

pressure (Côt�e and Smith, 2018), and also exhibit broad physiological toler-

ances, they have been able to successfully colonize a range of non-native

habitats in an era of unprecedented environmental change. While reductions

in populations of commercially and recreationally important Atlantic reef

species have been attributed to the invasive success of the lionfish throughout

its non-native range (Ballew et al., 2016; Côt�e and Smith, 2018), a commen-

surate shift in targeted fishing effort toward lionfish has not yet occurred, and

management approaches including targeted removals, and incentivized har-

vest are often implemented as a form of population control ( Johnston

et al., 2015).

In addition to reducing the availability of resources to native organisms

(van Kessel et al., 2011), with subsequent reductions in fitness, the presence

of invasive species can also reduce the predictability of those resources

(Carpenter et al., 2011). This can influence relationships between individual

physiological and behavioral traits and fitness in fish species, (Reid et al.,

2012) with potential consequences for the phenotypic composition of native

fish populations (Závorka et al., 2017). For example, brown trout parr (Salmo
trutta) with higher standard metabolic rates (SMR) show more territorial

behavior to secure consistent access to high quality habitat (Závorka et al.,

2017). Securing territories in this way helps ensure food resources are predict-

ably available, which can confer fitness advantages to these high metabolic

rate individuals (Reid et al., 2012; Závorka et al., 2017). However, should
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the predictability of these resources change, this adaptive advantage may be

lost, potentially leading to selection against individuals with high metabolic

demands (Killen et al., 2011; Zeng et al., 2017). Indeed, competitive displace-

ment disrupted the relationship between metabolic traits and territoriality

observed in brown trout parr at sites where the invasive brook trout (Salveli-
nus fontinalis) was established (Závorka et al., 2017) and was accompanied by

a reduction in space use and slower growth rates in brown trout in general.

Traits related to space use (H€ark€onen et al., 2014; Koeck et al., 2019),

energetic demand (Keiling et al., 2020; Redpath et al., 2010) and boldness/

aggression (Klefoth et al., 2017; Redpath et al., 2010) may each play a role

in determining capture vulnerability in fish, and so changes in the distribution

of these traits amongst wild fish populations because of invasive species may

in turn impact their availability to fisheries.

Although poorly understood, deleterious interactions between native and

non-native species may be buffered by present-day environmental conditions.

For example, high availability of shelter and food resources can mitigate com-

petition between native and non-native species (Kernan, 2015; van Kessel

et al., 2011; Stachowicz and Byrnes, 2006) while seasonal decreases in water

temperature can prevent the expansion or establishment of warmwater inva-

sive fish populations further outside of their natural range (Rahel and

Olden, 2008). Therefore, further environmental change may eventually trigger

a competitive imbalance and destabilizing effect in ecosystems where

non-native species are already present but relatively non-disruptive, when

differences in physiological tolerances and performance between native and

non-native species may be revealed and translate to differences in fitness.

Such a scenario is predicted to exacerbate the problem of invasive sea lam-

prey throughout the Laurentian Great Lakes (Lennox et al., 2020), which will

benefit from enhanced growth and the expansion of thermally suitable habitat

as the climate warms. This, in turn, will likely increase rates and lethality of

parasitism on native fish species of both recreational (e.g., lake trout; Muir

et al., 2012) and commercial (lake whitefish Coregonus clupeaformis;
Ebener et al., 2008) fisheries importance (Lennox et al., 2020). Similarly to

the lionfish example outlined above, no new commercial fishery targeting

lamprey has emerged in response to their increased abundance, and lamprey

are not a desirable species in recreational fisheries.

7 Future research and conclusions

Within the realm of comparative physiology in general, studies are only

recently beginning to consider the effects of multiple stressors on animal

functioning, and the potential effects of combined stressors on fisheries are

mostly unknown or speculative. Most work that has been done in this has

examined effects of fishing in isolation or in combination with perhaps a

single additional stressor (e.g., elevated temperature). This work has been a
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key foundation for understanding the physiological effects of fishing, the

potential for recovery after escape or release, collateral fishing mortality,

and population-level effects. However, much more work is needed to under-

stand the combined effects of the many stressors that fish regularly encounter

in the wild, including hypoxia, chemical and sensory pollution, artificial light,

altered pH, habitat degradation, and others, particularly in the context of fish-

eries. There is a broad range of potential research avenues in this field, but

here we outline five general areas of especially high priority:

1. The combined effects of multiple stressors during interactions with fishing
gears. Many studies have evaluated acute impacts of capture on fish in

terms of immediate physiological stress response, behavioral impairment,

and mortality, however many of these studies only consider a single envi-

ronmental scenario (for example, at a single water/air temperature, or time

of year). Experimental work evaluating these responses under prospective

climate change scenarios, and in response to other environmental stressors,

will further our knowledge on how the cumulative stress of capture and

additional stressors may impact wild fish populations.

2. Feedbacks between fisheries-induced evolution and vulnerability to envi-
ronmental stressors. While it is increasingly acknowledged that the

impacts of fisheries selection alter the phenotypic composition of targeted

fish species, the impacts of this phenotypic change are typically consid-

ered in terms life history and reproductive traits. How fisheries selection

may have influenced the capacity for exploited fish stocks to adapt

to climate change-induced stress, for example through the removal of

stress-resilient phenotypes, is completely unknown. While investigating

phenotypic change of cryptic traits in wild fish populations is extremely

challenging, new analytical techniques such as retroactive estimation of

metabolic rate via stable isotope analysis of otoliths provide new opportu-

nities to investigate change in metabolic traits of fish stocks over time.

Mesoscale fisheries simulations, where the traits of caught and uncaught

fish are known and can be monitored in real time would also do much

to elucidate how fishing changes the composition of fish populations,

and how these altered populations may cope with future environmental

stressors.

3. Overlap between fisheries and shifting population distributions. Poleward
range expansions, and compression of vertical habitat use in response to

changes in water temperature and oxygen concentrations have been observed

in a range of fish taxa, but mechanistic links between physiological traits and

habitat selection/use are still lacking, making future predictions of fish

home ranges difficult. With the development of high-resolution telemetry

devices, in addition to data loggers which can simultaneously measure fish

acceleration, temperature, and heart rate, studies evaluating the metabolic

costs/advantages of using specific habitats are increasingly viable. Studies
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using these approaches in both fully wild and mesocosm experiments

would be invaluable in predicting changes in encounter rates with fishing

gears in response to a warming climate.

4. Acute effects of multiple stressors on fish recovery after capture and
subsequent release or escape. Many studies have evaluated acute impacts

of capture on fish in terms of immediate physiological stress response,

behavioral impairment, and mortality, however many of these studies

only consider a single environmental scenario (for example, at a single

water/air temperature, or time of year). Experimental work evaluating

these responses under prospective climate change scenarios, and in

response to other environmental stressors, will further our knowledge on

how the cumulative stress of capture and additional stressors may impact

wild fish populations.

5. Sublethal effects of fishing practices and modulating effects of multiple
stressors. Many studies consider the cumulative impact of stressors in

terms of fish mortality, while more sublethal effects on performance and

fitness are more rarely investigated, despite their relevance for fisheries

management. The quality of harvested fish meat, reproductive investment,

and growth trajectories may all be impacted by various stressors, however

the degree to which this is occurring/may occur, and the economic impli-

cations for these changes in fisheries are mostly unknown.

6. Ecosystem level impacts of fisheries in a multi-stressor world. The

myriad of stressors faced by fish populations in freshwater and marine

environments will have ecosystem-wide effects, including alterations to

food-webs and interactions with non-native species. This is especially true

in the context of fisheries, which may exacerbate these effects by targeting

specific trophic levels, altering competitive and selective landscapes, and

potentially changing the phenotypic composition of targeted populations.

Our knowledge of these effects is currently extremely limited and much

more work is needed in this area.

There is no doubt that numerous anthropogenic stressors are having an impor-

tant impact on freshwater and marine fisheries and will continue to do so well

into the future. Understanding the mechanistic, physiological underpinnings

of these effects is critical for developing potential solutions and effective

science-based fisheries management. To date, research in this realm has

largely consisted of controlled laboratory experiments and field sampling

studies to isolate the physiological effects of fishing practices. Much more

work is needed to understand the effects of multiple stressors at each stage

in the fishing process and its relevance for not only those fish that are cap-

tured (and perhaps released or escaped) but also for those that are not captured

(with potential selection or evolutionary effects). In addition, much more

knowledge is needed regarding the potential feedbacks between fishing and

various forms of environmental stressors encountered by fish in the wild.
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The progress of various technologies for making fine-scale physiological

measures in the laboratory and tracking fish movements and logging physio-

logical measures in the wild will greatly facilitate research in these areas

going forward.
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