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Animal tracking data are being collected more frequently, in greater detail, and on

smaller taxa than ever before. These data hold the promise to increase the relevance

of animal movement for understanding ecological processes, but this potential will only

be fully realized if their accompanying location error is properly addressed. Histori-

cally, coarsely-sampled movement data have proved invaluable for understanding large

scale processes (e.g., home range, habitat selection, etc.), but modern �ne-scale data

promise to unlock far more ecological information. While location error can often be

ignored in coarsely sampled data, �ne-scale data require much more care, and tools to

do this have been lacking. Current approaches to dealing with location error largely

fall into two categories�either discarding the least accurate location estimates prior

to analysis or simultaneously �tting movement and error parameters in a hidden-state

model. Unfortunately, both of these approaches have serious �aws. Here, we provide a

general framework to account for location error in the analysis of animal tracking data,

so that their potential can be unlocked. We apply our error-model-selection framework

to 190 GPS, cellular, and acoustic devices representing 27 models from 14 manufac-

turers. Collectively, these devices are used to track a wide range of animal species

comprising birds, �sh, reptiles, and mammals of di�erent sizes and with di�erent be-

haviors, in urban, suburban, and wild settings. Then, using empirical data on tracked

individuals from multiple species, we provide an overview of modern, error-informed

movement analyses, including continuous-time path reconstruction, home-range distri-

bution, home-range overlap, speed and distance estimation. Adding to these techniques,

we introduce new error-informed estimators for outlier detection and autocorrelation

visualization. We furthermore demonstrate how error-informed analyses on calibrated

tracking data can be necessary to ensure that estimates are accurate and insensitive

to location error, and allow researchers to use all of their data. Because error-induced

biases depend on so many factors�sampling schedule, movement characteristics, track-

ing device, habitat, etc.�di�erential bias can easily confound biological inference and

lead researchers to draw false conclusions.

Keywords: animal tracking, Argos Doppler-shift, DOP, GPS, location error, VHF.

1 Introduction

Technological advances have ushered movement ecology into a new frontier of high-resolution
tracking data on a broad range of taxa (Kays et al., 2015). Animal movement data have
become central to ecology and can shed light on previously unanswerable questions relating
to behavior, population dynamics, and ecosystem function (Bestley et al., 2015; Kays et al.,
2015; Noonan et al., 2015; Strandburg-Peshkin et al., 2015; Lennox et al., 2017; McKinnon
and Love, 2018; Noonan et al., 2018; Abernathy et al., 2019). As the quality and quantity of
tracking data continue to improve, the scope of inference they provide can continue to expand,
so long as analytic methods keep pace. Already, modern movement data are informing on
activity and energy budgets (Williams et al., 2014; Noonan et al., 2019), �ne-scale habitat use
and selection (Ewald et al., 2014), species interactions and encounter processes (Martinez-
Garcia et al., 2020; Noonan et al., 2020a), but the ability to account for location error
is an emerging bottleneck (Noonan et al., 2019). With tracking technology, an historical
tradeo� exists between the size of a device and the precision of its location estimates, with
larger Global Positioning System (GPS; Table 1) and other global navigation satellite system
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(GNSS) location estimates typically having location errors on the order of meters, smaller
Argos Doppler-shift location estimates having errors on the order of kilometers1, and the
smallest (<1g) light-level geolocator-derived location estimates having errors on the order of
hundreds of kilometers (Kaplan and Hegarty, 2006; CLS, 2016; McKinnon and Love, 2018).
However, many other factors can in�uence GPS precision, including satellite reception, the
speci�c hardware and software used in a tracking device, and the time-lag between �xes,
with more frequent �xes potentially leading to more accurate post-processed estimates (sub-
meter with integrated Kálmán �ltering, Kreye et al., 2004). Thus, a universal, one-size-�ts-all
estimate for the location error representing a single class of technology would neglect a large
amount of variation. Here we highlight the fact that having accurate measures of location
error can be essential in providing accurate measurements of animal movement, depending
on the relative scales involved. This point has long been recognized by those using less
accurate technologies such as Argos Doppler-shift tags, where state-space models have been
used to account for location error when tracking animal movement (e.g., Jonsen et al., 2007;
Johnson et al., 2008; McClintock et al., 2014). However, if not properly accounted for,
we argue that typical location errors of GPS units can also result in mistaken conclusions.
For example, Noonan et al. (2019) showed that simple measures of speed are particularly
sensitive to location error as step-lengths are overtaken by error. Ross-Smith et al. (2016)
and Péron et al. (2017) found it necessary to account for vertical errors in the estimation of
�ight-altitude distributions. Location error is also important when estimating home ranges
from triangulated VHF (Gerber et al., 2018) and Argos Doppler-shift (Meckley et al., 2014)
tracking data, and so GPS errors should be expected to impact the home-range estimates of
animals with smaller home ranges. In all of these cases, biological inference is compromised
when location error becomes comparable to the relevant movement scales, and the biases
due to mishandling or ignoring location error can easily outstrip the truth (e.g., the more
than 10-fold overestimation of wood turtle speed noted by Noonan et al., 2019). As we will
elaborate on, these di�erential biases can cause researchers to draw mistaken conclusions,
such as a species traveling faster and more tortuously under dense canopy than in an open
habitat.

Most animal movement analyses simply ignore the issue of location error. Beyond that,
conventional solutions to mitigating against location error involve either discarding the most
erroneous locations according to a threshold (e.g., Bjørneraas et al., 2010; Poessel et al.,
2018a,b) or simultaneously modeling the movement and error with a hidden state model
(e.g., Ross-Smith et al., 2016; Péron et al., 2017). As we detail, the former solution is at best
incomplete, while the latter cannot reliably distinguish between variance due to movement
and variance due to location error. Related to these issues is the problem of outlier detection,
which has, until now, relied on metrics assuming no location error, in accordance with the
above principle of thresholding. Here we present comprehensive methods and guidelines
for dealing with location error (Fig. 1), largely focused on GPS, but also including Argos
Doppler-shift, Global System for Mobile Communications (GSM), acoustic trilateralization,
and other tracking technologies that provide location estimates. First, we put forward the
need and best practices for the error calibration of tags and encourage researchers to obtain

1By `Argos Doppler-shift', we speci�cally refer to location estimates derived from communication with
the Argos satellite system and not GPS location data that are uploaded to the Argos satellite system.
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this information before they start collecting tracking data. Second, we provide a statistically
e�cient framework for quantifying location error, showing how to create and select among
error models with 190 example calibration datasets. Finally, we demonstrate how calibrated
tracking data then serve as ideal inputs for error-informed movement analyses, including path
reconstruction, connectivity quanti�cation, home-range estimation, and distance estimation.

Tracking data and their error information

Satellite location data are accompanied by variable degrees of location error�on the order of
1�10 meters for di�erential and tri-lane GPS location error, 10�100 meters for conventional
GPS horizontal error, several times that for GPS vertical error, and 100�10,000 meters for
Argos Doppler-shift horizontal error (Kaplan and Hegarty, 2006; Parkinson and Enge, 1996;
CLS, 2016). Location errors are generally heteroskedastic�meaning that their variances
can change in time, depending on the reception and spatial con�guration of the satellites
and tracking device. While older Argos Doppler-shift location data only come with error
classes that must be calibrated (Vincent et al., 2002) or �t simultaneously with a movement
model (e.g., Johnson et al., 2008), modern Argos data come with

√
2-standard-deviation

error ellipses, estimated by a custom multiple-model Kálmán �lter (Lopez et al., 2014).
Error ellipses are more necessary with Argos Doppler-shift location estimates, because the
polar orbits of Argos satellites provide better resolution of latitudes than longitudes. Argos
Doppler-shift location data were also the �rst to be modeled via state-space models incorpo-
rating both continuous-time non-Markovian movement processes and heteroskedastic errors
(Johnson et al., 2008).

GPS device manufacturers do not generally provide calibrated error circles of known quan-
tile or standard deviation. In contrast to modern Argos Doppler-shift data, GPS location
estimates typically come with unitless and device-speci�c �horizontal dilution of precision�
(HDOP) and �vertical dilution of precision� (VDOP) values. Ideally, DOP values are designed
to account for the order-of-magnitude heteroskedasticity stemming from satellite reception,
geometry, latitude, and dynamics (Kaplan and Hegarty, 2006; Yahya and Kamarudin, 2008),
which, for the purpose of animal tracking, includes the e�ects of local habitat, canopy, cover,
burrowing, device orientation, speed, and most everything else short of space-weather events
(Coster and Komjathy, 2008). DOP values provide the time-dependent transformation

location error(t)︸ ︷︷ ︸
heteroskedastic

= DOP(t)× UERE(t)︸ ︷︷ ︸
homoskedastic

, (1.1)

between heteroskedastic location error and homoskedastic �user equivalent range error� (UERE).
UEREs can be thought of as partially standardized location errors, and can be assumed to
be a mean-zero, stationary Gaussian process (Kaplan and Hegarty, 2006), which de�nes our
null model. By quantifying the relatively simple distribution of UEREs that can often be
described by a single scale parameter, we can back-transform with DOP values to quantify
the time-dependent distribution of location errors. Traditionally, the UERE scale parame-
ter estimated is the root-mean-square (RMS) UERE. We refer to the direct estimation of
UERE parameters�and subsequent back-transformation via relation (1.1)�as error `cali-
bration'. However, GPS location data are sometimes missing relevant DOP information and
may exhibit more complex error structures than present in the null model (1.1), which can
necessitate error-model selection.
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Triangulated VHF location errors tend to be intermediate to GPS and Argos Doppler-
shift errors in magnitude, and their location estimates come equipped with error ellipses when
using the method of Lenth (1981), such as from R package sigloc (Berg, 2015). (Also, see
Gerber et al. (2018) for full posterior estimation of the location-error distributions.) There-
fore, operationally speaking, triangulated VHF tracking data can be treated analogously to
modern Argos Doppler-shift data.

Acoustic trilateralization is more popular in marine systems, where electromagnetic sig-
nals rapidly attenuate. These systems operate much like GPS, but via acoustic signals with
receivers �xed underwater instead of electromagnetic signals with satellites in orbit. In par-
ticular, Vemco positioning system (VPS) location estimates come with �HPE� values, which
Vemco documentation describes as being analogous to GPS HDOP, in that they are propor-
tional to error-circle radii and must be calibrated on a per-network basis (Smith, 2013).

`Global System for Mobile Communications' (GSM) cellular networks provide a number
of data sources that devices can use to estimate location, such as time-of-arrival, angle-
of-arrival (azimuth), and signal strength with respect to multiple cellular towers (Martínez
Hernández et al., 2019). Resulting location estimates can vary in quality, depending on
the techniques employed and network coverage, and may return error-parameter estimates
analogous to GPS, though error ellipses may be more desirable.

In summary and irrespective of how they are collected, tracking data that provide lo-
cation estimates usually come with either error-circle (GPS, GSM, VPS) or error-ellipse
(triangulated VHF, Argos Doppler-shift, geolocator) information. Sometimes this informa-
tion is only proportional to the location error's variance (GPS, GSM, VPS), and further
estimation is required to fully quantify the error distribution.

When can location error be reasonably ignored?

It can be reasonable and pragmatic to simply ignore location error in a focal study, if the
scales of error are far smaller than all relevant scales of movement. For example, 10-100
meter GPS error can be considered insubstantial in comparison to a global migration sam-
pled on a daily schedule, where individuals travel many kilometers between location �xes.
In situations where this comparison is less clear cut, researchers can perform a sensitiv-
ity analysis to approximate the impact of ignoring location error via simulation (App. S1).
Because these sensitivity estimates are approximate and require as much e�ort as more-
exact, error-informed analysis, we only recommend this procedure in cases where there is no
error-informed analysis at hand.

Conventional approaches to handling location error

The most common approach in the literature to deal with location error is simply to discard
the most erroneous location estimates, either with an arbitrary HDOP threshold for GPS
data or a location-class threshold for Argos Doppler-shift data (Bjørneraas et al., 2010).
This threshold is especially arbitrary for GPS data, as HDOP values do not have the same
meaning across device models, even when assuming the null model of location error = DOP
× UERE (1.1), and complicated by the fact that most manufacturers do not provide UERE
parameters for their wildlife telemetry devices. Consider, for example, that if the RMS
UERE of device model A is twice that of device model B, then an HDOP value of 10 on
device model A is equivalent to an HDOP value of 20 on device model B. As an improved
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criterion, Meckley et al. (2014) argued for objective thresholding, based on calibrated error
estimates (in meters), rather than unitless precision estimates that vary by device model.
However, thresholding the data still involves a trade o�, whereby reduced bias comes at the
cost of a smaller sample size. At both extremes�large included location errors and small
sample sizes�there can be substantial bias from too much location error or not enough
data, and an intermediate threshold that can su�ciently mitigate both biases may not exist
(Noonan et al., 2019).

Rather than discarding data, state-space models consider the location �x as the com-
bination of both movement and location error, with unknown parameters for each model.
State-space models constitute the second most common approach in the literature to ac-
count for location error. However, the movement and location-error parameters are almost
always simultaneously estimated from tracking data (e.g., Kuhn et al., 2009; Swimmer et al.,
2009; Howell et al., 2010; Sulikowski et al., 2010; Vermard et al., 2010; Matthews et al., 2011;
Blanco et al., 2012; Carman et al., 2012; Hückstädt et al., 2014; Dalleau et al., 2014; Kennedy
et al., 2014; Ross-Smith et al., 2016; Afonso et al., 2017; Péron et al., 2017). As has been
pointed out by Auger-Méthé et al. (2016), state-space models can misappropriate variance
due to movement and location error when the two sets of parameters are �t simultaneously
to tracking data, as is common practice in ecology. Fundamentally, this misappropriation is
due to a lack of statistical identi�ability�if movement and error models can produce similar
outputs, then their parameters (and in�uences) cannot be reliably teased apart (Hilborn and
Mangel, 1997).

As we detail here, error calibration is a straightforward solution to the problem of statis-
tical identi�ability. However, there is an abundance of historical tracking data for which no
calibration data exist, and the simultaneous �tting of movement and location-error parame-
ters performs better in some situations than others. Therefore, it is still useful to understand
under what circumstances simultaneous �tting can succeed or fail.

A comprehensive framework for addressing location error

Our proposed framework to account for location error in animal tracking data is a gen-
eral approach with three basic steps�calibration-data collection, error-model selection, and
error-informed analysis�summarized in Fig. 1 and brie�y described below. Calibration-data
collection is detailed more thoroughly in Sec. 2.1. Error-model selection is then covered in
Sec. 2.2, with derivations given in App. S2�S3, and 27 error-model-selection examples pro-
vided in App. S4. Finally, Sec. 3 presents empirical examples of error-informed movement
analyses on tracking data, where accounting for location error impacts inference.

1. Calibration-data collection First, we address the lack of statistical identi�ability
between movement and location-error parameters, when estimating the two simultaneously
in a state-space framework. Instead of simultaneous estimation, we propose calibrating all
tracking data before movement analysis. In the calibration step, researchers collect location
data that have a known movement model, which we refer to as calibration data. Most simply,
we record location data at �xed locations, so that all variance in the calibration data is solely
due to location error. We then estimate error-model parameters from the calibration data,
which addresses the identi�ability issues pointed out by Auger-Méthé et al. (2016).
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2. Error-model selection Second, we address the lack of standardization across GPS
devices, the incomplete location-error information accompanying many GPS data, and the
variable degree of performance provided by information on location error. The location-
error predictors we discuss in App. S3 and apply in App. S4 include DOP values, the
number of satellites, and various location-class proxies. Therefore, we introduce a new
model-selection framework based on corrected Akaike information criterion (AICC) values
(App. S2). AIC-based model selection achieves asymptotically optimal predictions (Yang,
2005), and is known to perform well when selecting among a small number of plausible can-
didate models, while `corrected' AICC values are adjusted for bias (Burnham and Anderson,
2002). We also derive a goodness-of-�t statistic to objectively gauge the selected model's
performance.

3. Error-informed analyses The third and �nal step of our proposed framework is to
feed these calibrated data into error-informed�and preferably, continuous-time�analyses.
Both the crawl (Johnson, 2008; Johnson et al., 2008) and ctmm (Fleming and Calabrese, 2015;
Calabrese et al., 2016) R packages are capable of performing a large number of continuous-
time movement analyses while accounting for (calibrated) heteroskedastic location errors
in a state-space framework, including path reconstruction, conditional simulation, and the
calculation of utilization distributions (Fleming et al., 2015, 2016, 2017). The family of
Brownian-bridge methods within R package move (Kranstauber et al., 2012) can also incor-
porate calibrated location errors, as can the behavioral-segmentation methods in R packages
momentuHMM (McClintock and Michelot, 2018) and smoove (Gurarie et al., 2017)�both by
leveraging crawl.

Here, we expand on these methods by introducing error-informed statistics for outlier de-
tection and variogram-based autocorrelation visualization. We provide a thoroughly tested
and documented software implementation for all analyses in the CRAN-hosted ctmm R pack-
age, complete with both help �les and long-form documentation via vignette('error').
Finally, we demonstrate the necessity and utility of these methods with several empirical ex-
amples, where accounting for location error makes the di�erence between accurate inference
and qualitatively incorrect inference.

2 Calibration-data collection and error-model selection

2.1 How to collect calibration data

In the simplest case, `calibration data' are location �xes obtained when a tracking device is
not moving. Error-model parameters are best estimated when the true movement model is
known, to avoid the potential for misspeci�cation. The simplest movement model possible
is one of no movement. Therefore, to collect calibration data, tracking devices should be left
at �xed locations over an extended period of time�preferably for days. The true locations
do not need to be known a priori; these can be estimated simultaneously with the UERE
parameters, in a statistically e�cient manner.

How many tracking devices should be deployed?

Ideally, only one device per model is needed to collect calibration data, as all devices of the
same make and model should have similar UERE distributions. However, multiple devices
of the same model can be deployed and the assumption of identical devices can be tested via
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model selection. If UERE parameter estimates are consistent, then those calibration data
can be integrated together to obtain more accurate estimates. If calibration data come at
the cost of limited battery life that would otherwise be used to collect animal tracking data,
we suggest a two-stage calibration deployment when device heterogeneity is a concern. In
the �rst round of deployments, a small amount of pilot calibration data are collected for each
device, such that the total number of sampled locations can meet the target accuracy, were
the UERE distributions identical. Discrepancy among devices can then be tested for and, if
found signi�cant, further per-device calibration data can be collected in a second round of
deployments. Otherwise, if UERE parameter estimates are found to be consistent, the single
estimate is su�cient.

How much calibration data should be collected?

UERE parameters are estimated from data, and so increasing the sample size will increase
their precision. At minimum, calibration data should be collected over the course of a day,
to sample a wide range of satellite con�gurations and DOP values. Researchers may want
to collect many days of calibration data if space weather events are of concern (Coster and
Komjathy, 2008). More location �xes will provide more precise UERE statistics, but the
sampling frequency should not be so high as to induce location-error autocorrelation not
present in the tracking data. For GPS devices featuring on-board location-error �ltering,
the RMS UERE may shrink at higher sampling rates (∼1 Hz) and, therefore, the sampling
schedule of the calibration data should be the same as that of the tracking data. If the same
device has been used at disparate sampling rates, then the presence of an on-board error
�lter can be tested with calibration data collected over the same range of values.

Relative error in a single mean-square (MS) UERE estimate will be of standard deviation√
2/q(N−K) (c.f., Eq. S2.7), where q is the number of spatial dimensions (q = 2 for horizon-

tal UEREs and q = 1 for vertical UEREs), N is the total number of sampled locations, and
K is the number of unknown locations where calibration data were collected. With only one
calibration deployment per tracking device, K is simply the number of devices. Therefore,
given some relative error tolerance TOL = STD[θ̂]/θ in the MS UERE estimate, the total

number of calibration �xes necessary to meet that tolerance in the MS UERE estimate is

NTOL = K +
2

qTOL2 . (2.1)

E.g., for 10 devices in two dimensions and deployed once each, the requisite number of
calibration �xes per device is 41 (or 1001) for relative error tolerances of 5% (or 1%). If the
10 devices are found to have signi�cantly di�erent UERE parameters, then in the second
round of deployments an additional 361 (or 9001) calibration �xes must be collected per
device, to meet the same relative error tolerance in the individualized parameter estimates.

Where should calibration data be collected?

For newer tracking devices that estimate reliable DOP values and mitigate against multipath
errors (Table 1), it should not be necessary to sample calibration data in multiple habitats
or latitudes. The e�ect of variable signal reception across di�erent habitat types should
be accounted for in the DOP values. But, again, this assumption can be challenged, by
�rst collecting a small amount calibration data in each habitat, testing for discrepancy, and
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then collecting more calibration data if necessary. For devices that feature multiple `location
classes'�location estimates of substantially di�erent precision, regardless of DOP value�
it may be important to sample in areas of poorer satellite reception, because if only the
best location classes are observed in the calibration data, then the worst location classes
cannot be reliably calibrated. Furthermore, to test the veracity of a device's DOP values,
less-than-ideal signal reception may be preferable to magnify their presumed impact.

Opportunistic calibration data

For studies where calibration data were not collected and cannot be collected after the fact,
it still may be possible to assemble calibration data opportunistically. Segments of time
when the individual was deceased, at a rest site, or when the collar was detached may be
subsetted and treated as calibration data. Researchers should be especially careful that
opportunistic calibration data are free of movement. Methods to test for the presence of
movement in relocation data include correlogram analysis (Fig. S4.1) and attempting to �t
an autocorrelated movement model (simultaneous with unknown UERE parameters) to the
data. However, both of these approaches assume that the data are sampled �nely enough
that movement and error are easily distinguishable, yet coarsely enough that the location
error itself is not autocorrelated, which will typically be the case for GPS location estimates
sampled at least 1�2 minutes apart (Tao and Bonnifait, 2015).

2.2 An error-model-selection framework

After error calibration data have been collected, an appropriate error model can be selected.
In the null model of GPS location error (1.1), DOP values contain all dependence on satellite
geometry, including the number of satellites in communication. On the other hand, UEREs
are generally assumed to be a mean-zero Gaussian process (Kaplan and Hegarty, 2006),
characterized by its scale parameter (e.g., RMS UERE), even though the location errors
may have a heavy-tailed distribution (Fig. 2). However, complications may arise, such as if
DOP values are not recorded by the device or there are multiple location classes with di�er-
ent UERE distributions. Di�erent error models may be appropriate in di�erent situations.
Therefore, in App. S2 we derive RMS UERE estimators, AICC values, and goodness-of-�t
statistics for location-error models �t to calibration data. We have focused great attention
on the statistical e�ciency of our estimators, which have ideal performance for one location
class and normally distributed UEREs, including for the null model (1.1), and better per-
formance than maximum likelihood more broadly. Unbiased estimators are important when
pooling small amounts of calibration data, and when calibrating multiple location classes
where some �x types rarely occur (c.f. S4.11).

As tracking devices can vary in behavior and poorly speci�ed location-error models can
lead to heavy-tailed UERE distributions, error-model selection can be important for making
the best use of tracking data. AIC values serve as a model selection criterion that balances
goodness of �t against parsimony (Burnham and Anderson, 2002) and can provide asymptot-
ically optimal predictions (Yang, 2005). However, in situations where sample sizes are small
and debiased parameter estimates di�er substantially from (biased) maximum-likelihood pa-
rameter estimates, `corrected' AICC values can di�er substantially from regular AIC values.
Furthermore, it is not su�cient to adopt o�-the-shelf AICC formulas, because they are both
model and estimator dependent (Calabrese et al., 2018; Fleming et al., 2019), and the most
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commonly used AICC formulas are derived speci�cally for linear models estimated via max-
imum likelihood. Therefore, our AICC model-selection criterion is based on newly derived
formulas, speci�c to our model structures and debiased parameter estimators (App. S2.1.1
& S2.2.1).

While useful as a model selection criterion, AICC values scale with the amount of data
and cannot be used to assess a model's goodness-of-�t for comparing performance across
devices (Burnham and Anderson, 2002). Therefore, we develop an absolute goodness-of-�t
statistic�reduced Z2 or Z2

red�that can be compared across animals, devices, and studies.
Z2

red is an error-model analog to the well-known reduced chi-squared statistic, χ2
red, but based

on Fisher's Z distribution (App. S2.1.2 & S2.1.2). As with χ2
red, smaller values of Z2

red denote
better performance and knowing the true model results in Z2

red = 1 on average.
In App. S3 we introduce a number of error models for GPS devices with missing or

incomplete DOP information. The predictors covered include the hierarchy of DOP values
(HDOP, VDOP, PDOP and GDOP�Table 1), approximating DOP values with the number
of satellites, and the possibility of GPS �x type and time-to-�x as modi�ers. We then apply
these error models to 190 GPS, GSM, and VPS devices representing 27 device models from 14
manufacturers in App. S4, using our error-model-selection framework with R implementation
in the ctmm package (Fleming and Calabrese, 2015; Calabrese et al., 2016).

For most of the devices we analyze in App. S4, ctmm's null location-error model�based
on the advice of App. S3�is the selected error model, and the calibration step is as simple
as the R assignment

uere(DATA) � uere.fit(CALIBRATION) ,

where DATA refers to the tracking data and CALIBRATION refers to the calibration data. For
pre-calibrated location data, such as Argos Doppler-shift and triangulated VHF location
estimates, no calibration steps need to be taken, while problematic devices exhibiting a
statistically ine�cient null model will require model selection. A worked example is given in
vignette('error') within R package ctmm.

2.3 Error or outlier?

A dual task to modeling location error is the classi�cation of outliers, which are observations
that defy the combined movement and error model (Fig. 3). For instance, a recorded �ight
altitude only slightly below ground with a large corresponding VDOP could be considered
typical (p -value � 0), while a recorded �ight altitude deep below ground with a small cor-
responding VDOP should be extraordinarily rare (p -value ≈ 0) under normal circumstances
and therefore considered an outlier. Normatively erroneous data are not outliers and can
still contain meaningful information that should be retained, as long as the applied statisti-
cal framework incorporates an appropriate error model. Discarding data that are not true
outliers can bias inference (Péron et al., 2020).

The classi�cation of outliers aside, the second problem is what to do with them. If the
data contain many outliers, then the ideal solution is to improve the error model until said
outliers can be considered normative (c.f., App. S4.5.2). However, if the number of outliers
is small, then requisite error-model parameters may not be well resolved, and even so, the
information gained by incorporating these data may be insubstantial. Therefore, removing
outliers can be a pragmatic choice, especially in animal tracking data, which can be plagued

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.130195doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.12.130195
http://creativecommons.org/licenses/by-nc-nd/4.0/


with ba�ing abnormalities. In any case, these decisions should always be reported with
resulting analyses.

It is standard practice to classify outliers in animal tracking data using simple metrics
such as speed and distance, so that location estimates implying implausible movements can
be ruled out (Douglas et al., 2012; Sa� and Kranstauber, 2021). However, traditionally
these outlier metrics have not been informed by location error, and so they can confound
normative errors with true outliers. For example, straight-line distance is commonly used as
an estimate of the minimal path-length requirement between sequential location estimates,
yet location errors cause this calculation to overestimate true distances (Ranacher et al.,
2016; Noonan et al., 2019). In App. S5 we derive maximum-likelihood distance and speed
estimators that account for location error and are minimally conditioned on the data. These
estimators are implemented in the ctmm (Fleming and Calabrese, 2015; Calabrese et al.,
2016) method outlie(), and demonstrated in Fig 3. While the example in Fig. 3 is visually
striking, outliers in �nely sampled data are not generally obvious, and their implausibility
cannot be properly discriminated without accounting for the associated location errors.

Location-error outliers can occur in both tracking and calibration data. Identifying out-
liers in calibration data, therefore, may require some degree of iteration, whereby researchers
�rst assume a plausible RMS UERE value and then calculate a more accurate RMS UERE
value after removing all contingent outliers. The updated RMS UERE can then be checked
for consistency by applying it to the initial data (with outliers intact) and determining if the
same classi�cation of outliers is recovered (Fig. 1).

3 Empirical examples

We present two sets of empirical analyses�one set on an expansive collection of calibration
data and another set on individual tracked animals. First, we analyze the quality of error
information provided by tracking devices in Sec. 3.1. Second, we demonstrate the impact of
proper error modeling and error-informed methods on biological inference in Secs. 3.2-3.5.

3.1 Device calibrations

Here we summarize the application of our error-model-selection techniques to 190 GPS, cel-
lular, and VPS devices representing 27 device models from 14 manufacturers. These tracking
devices are used on a number of species, including American black bear (Ursus americanus),
Andean condor (Vultur gryphus), bald eagle (Haliaeetus leucocephalus), barn owl (Tyto alba),
black-crowned night-heron (Nycticorax nycticorax ), European perch (Perca �uviatilis), east-
ern and western Santa Cruz Island Galapagos giant tortoises (Chelonoidis donfaustoi and
Chelonoidis porteri), eastern coyote (Canis oriens), �sher (Pekania pennanti), golden eagle
(Aquila chrysaetos), northern pike (Esox lucius), raccoon (Procyon lotor), white-tailed deer
(Odocoileus virginianus), and wood turtle (Glyptemys insculpta). For each device model, the
selected error models and their goodness-of-�t statistics are reported in table 2, while the
details of each individual model-selection procedure are provided in App. S4. With the fol-
lowing statistics on these 27 device models, we also report 95% binomial con�dence intervals
to make population-level inferences on devices of this era.

In 56% (39%�75%) of device models, the reported data on location error was trustworthy
enough that model selection was not necessary to obtain the best performing error model, if

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.130195doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.12.130195
http://creativecommons.org/licenses/by-nc-nd/4.0/


following the guidelines suggested in App. S3. In 77% (63%�91%) of device models, one set
of calibration parameters could safely be assumed valid for all devices of the same make and
model. Only 7% (1%�24%) of device models had a selected error model that was nontrivial
and required substantial modeling e�ort. The Sirtrack Pinnacle Solar G5C275F had location
errors that shrank by a factor of four after 32 seconds of �time on�, while the ATS G2110e had
location errors that decreased smoothly with number of satellites and increased smoothly
with time-to-�x. Both of these device models' reported HDOP values that were either not
informative or were marginally informative.

In terms of horizontal errors, an estimated 22% (9�42%) of device models had DOP
values that were misinformative, in that they provided worse information on location error
than a model of homoskedastic errors. All other properties held �xed, a larger Z2

red statistic
indicates a heavier tailed UERE distribution. In several examples, the DOP values were
so poor that their Z2

red were comparable to that of a Cauchy distribution, which does not
even have a �nite variance. Furthermore, an estimated 0% (0%�52%) of device models had
particularly informative VDOP values, in that they provided the best information on vertical
location error, as they are expected to.

Finally, for each device we estimated its (horizontal) RMS location error under ideal
conditions, which we denote as RMSEmin. Ideal conditions typically amount to HDOP=1,
in which case RMSEmin is equivalent to the RMS UERE calibration parameter, but some
devices return DOP values below 1 or error estimates in meters rather than unitless DOP
values. RMSEmin estimates ranged an order of magnitude, from 1.7 meters to 21 meters, with
the more precise devices likely relying on newer dual-frequency GPS receivers or on-board
Kálmán �ltering. Similarly, RMS UERE calibration parameters also varied by an order of
magnitude.

3.2 Path reconstruction of a GPS-tracked common noddy

Methods

To demonstrate the impact of heteroskedastic location errors on the simultaneous �tting of
movement and error parameters, we considered 4 days of common noddy (Anous stolidus)
GPS data, collected at 20-minute intervals with corresponding position-DOP (PDOP) val-
ues. Locations were clipped from around the nest to avoid non-stationarity due to the
switching between foraging and nesting behaviors. To this dataset we performed a standard
continuous-time movement-model-selection procedure (Calabrese et al., 2016) with three
di�erent error models�a simultaneously �t homoskedastic location-error model, a simulta-
neously �t PDOP-informed error model, and a calibrated PDOP-informed error model. For
each selected model we inspected the location-error estimates and corresponding occurrence
distributions. Occurrence distributions quantify where the individual was located during
the sampling period by probabilistically reconstructing the movement path (Fleming et al.,
2016). The most common example of an occurrence distribution is the Brownian bridge
(Horne et al., 2007), which assumes a movement model of Brownian motion. In contrast,
here we selected a movement model via AIC.
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Results

When simultaneously �tting movement parameters with a homoskedastic error model, the
RMS location error was estimated to be 500 meters (95% CI: 390�610 m), which is im-
plausibly large for GPS-quality data. Simultaneously �tting movement parameters with a
PDOP-informed error model improved the RMS location-error estimate by an order of mag-
nitude to 44 meters (21�68 m) at PDOP=1, which is still several times larger than expected.
By simultaneously �tting error and movement model parameters, these results correspond
to the conventional application of state-space models. Finally, when using a small sample
of calibration data, we found the RMS location error to actually be only 3�4 meters at
PDOP=1, which is consistent with a GPS device with a dual-frequency GPS receiver or an
on-board Kálmán �lter.

Occurrence distributions corresponding to the selected movement and error models were
calculated and are shown in Fig. 4. These distributions correspond to the probability of
where the animal was during the sampling period, and their coverage area quanti�es our
ignorance of where the animal was located throughout that time (Fleming et al., 2016).
Occurrence distributions can essentially be thought of as posteriors for the unknown trajec-
tory. Compared to the most accurate location-error model (Fig. 4C), the simultaneously �t
homoskedastic error model produced a 95% occurrence area that was 140% larger (Fig. 4A).
In contrast, the model with simultaneously �t PDOP-informed error model only produced
a 95% occurrence area that was 4% larger (Fig. 4B). Importantly, occurrence distributions
are dependent on both the underlying movement and location-error processes. And while
there was an expected trade-o� between estimated variance due to location error and due to
movement, in this example the movement parameter estimates only varied by ∼ 15%, even
though the location-error parameter estimates varied by orders of magnitude. Therefore,
larger di�erences here in the occurrence distributions can mostly be attributed to di�erences
in the location-error models.

3.3 Home range of an Argos-tracked night-heron

Methods

We considered 6 months of data on a black-crowned night heron (Nycticorax nycticorax ),
tracked with an Argos Doppler-shift tag in ∼60-minute intervals during its range-resident
period�wherein the heron was not migrating and had a well established home range. These
Argos Doppler-shift data were of the older variety that do not come pre-calibrated. Instead,
each location estimate was accompanied with a location class�3,2,1,0,A,B,Z�for which we
used the calibration results of Vincent et al. (2002) to estimate the error ellipses. We applied
two home-range estimators, a conventional kernel density estimator (KDE) and an error-
informed autocorrelated kernel density (AKDE) estimator with weights optimized to mitigate
against irregular sampling (Fleming et al., 2015; Fleming and Calabrese, 2017; Fleming
et al., 2018). In the latter method, both the autocorrelation estimator and bandwidth
optimization tease apart variance due to movement and error, and the data are �rst Kriged
to reduce location error before placing the kernels (Fleming et al., 2016, 2017). The estimator
represents the default output of the akde()method in the ctmm R package when conditioning
on an error-informed movement model. Moreover, for these data, AKDE without a location-
error model also results in conventional KDE, because these data appear independent when
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ignoring error. Therefore, our comparison e�ectively includes both error-informed and non-
informed AKDE.

With each estimator, we manipulated the quality of input data, from only including the
best location class (3) to including all of the data (3�B). Researchers with Argos Doppler-shift
data typically will threshold their data class-wise like this based on quality before applying
methods that do not account for error. Therefore, our analysis tests the sensitivity to this
choice of cuto�, in addition to biases that stem from not accounting for location error.

Results

The conventional KDE home-range estimates were highly sensitive to the location-class
threshold, and larger than all error-informed estimates even when restricted to the highest
quality data (Fig. 5). In contrast, error-informed AKDE produced consistent home-range es-
timates with respect to included location class, though the sample size dropped precipitously
when only including the highest quality �xes.

3.4 Home-range overlap of an Argos-tracked night-heron

Methods

To further demonstrate the impact of location error on home-range estimates we considered
the degree of home-range overlap for a night-heron across two summers (2017, 2018), also
tracked with an Argos Doppler-shift tag, but complete with pre-calibrated error-ellipse in-
formation. We applied both conventional KDE and error-informed AKDE, and compared
overlap (Winner et al., 2018) between summer ranges as a measure of year-to-year site �-
delity. Again, these data appear independent when ignoring location error, and so AKDE
without an error model results in conventional KDE. Therefore, our comparison e�ectively
includes both error-informed and non-informed AKDE.

Results

According to the conventional KDEs, which is biased by location error to have in�ated
variance and thus in�ated overlap, the 2017 and 2018 summer ranges were largely similar
at 82% (78%�86%) overlap, whereas according to the error-informed AKDEs the 2017 and
2018 summer ranges were adjacent, but largely distinct, at 33% (22%�46%) overlap (Fig. 6).
Therefore, in this case, the estimator used has a direct impact on biological inference, because
the Argos Doppler-shift location errors are large relative to the home-range area of the night-
heron.

3.5 Speed of GPS-tracked wood turtle

Methods

We considered 6.3 months of wood turtle (Glyptemys insculpta) data, tracked with a Lotek
GPS tag in 1-hour intervals, for which we apply the location-error model selected in Sec. S4.5.2.
We applied two mean-speed estimators: a conventional straight-line-distance estimator and
a continuous-time speed and distance estimator that accounts for both location error and
tortuosity (Noonan et al., 2019). For each estimator, we manipulated the input location
error by only considering location �xes below a threshold HDOP value.
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Results

While the straight-line distance estimates were extremely sensitive to the HDOP cuto�, the
error-informed estimates were largely consistent across threshold levels (Fig. 7). With the
conventional straight-line distance estimator, two primary sources of bias exist�positive bias
from ignoring location error (Ranacher et al., 2016; Noonan et al., 2019) and negative bias
from ignoring tortuosity (Rowcli�e et al., 2012; Noonan et al., 2019). In contrast to home-
range estimation, discarding erroneous observations to mitigate against the �rst bias actually
increases the second bias. Therefore, while in Fig. 7 the mean-speed estimate is improved
by discarding erroneous data, in other cases with faster species the same manipulation can
produce an increasingly net negative bias. Importantly, the �Goldilocks��not too much, not
too little�HDOP threshold required to balance these two biases cannot be known a priori,
as it depends sensitively on the scales of movement, scales of location error, and sampling
schedule.

4 Discussion

We are currently in a golden age of biotelemetry, where more individuals and more taxa are
being tracked than ever before, and with no end in sight (Kays et al., 2015). Tracking data
have become highly desirable for a variety of ecological, evolution and conservation purposes.
That is why, when working with animal tracking data, it is critical to include an appropriate
error model in any movement analysis where the scales of location error are substantial
in comparison to the relevant scales of movement (Noonan et al., 2019). The widespread
practice of discarding location �xes based on a DOP-value or location-class threshold can
only serve as a partial mitigation against location error, at the cost of diminished sample size.
Using empirical data, we have demonstrated that error-naive estimates can be very sensitive
to the chosen threshold, and cannot be expected to converge to error-informed estimates,
even when most of the data has been discarded (Figs 5-7). Without an appropriate error
model, common movement metrics can easily be biased by an order of magnitude (also see
Noonan et al., 2019). We have also demonstrated that device-speci�c errors can vary by
an order of magnitude (table 2), which means that a DOP value of 1 on one model device
can be equivalent to a DOP value of 10 on another model device. On the other hand,
simultaneously estimating both the movement and location-error parameters, which is also
a common practice, is known to be problematic because the variances due to movement and
due to error cannot be reliably distinguished (Auger-Méthé et al., 2016; Noonan et al., 2019).

Motivated by these challenges, we have introduced a comprehensive guide and framework
for addressing location error in animal tracking data. Our framework consists of a three-
step solution to account for location error in movement analysis (Fig. 1) starting with the
collection of calibration data and the application of formal model-selection techniques to
construct a statistically e�cient location-error model. Finally, with error-informed movement
analyses, researchers can use all of their data to produce the best possible estimates. We
have also added to the existing number of error-informed analyses with statistics for outlier
detection and autocorrelation estimation.

Error-informed analysis on calibrated tracking data can be necessary for meaningful bi-
ological inference, as the amount of bias present in conventional estimates is a function of
the sampling schedule, scales of movement, and scales of error. When making comparisons
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across time, across individuals, or across taxa, observed di�erences in estimated behavior may
simply be the result of di�erential biases, when using traditional methods. For instance, if
estimating energy expenditure via distance traveled for conspeci�cs at two di�erent study
sites, presumed di�erences could be the result of environmental factors driving hypothesized
biological mechanisms, or there could a be non-biological explanation related to inaccuracy.
Di�erences in distance estimates could be the result of two di�erent model tracking devices
with substantially di�erent calibration parameters having been deployed at the two study
sites, so that the individuals tracked with less precise receivers appear to move more tor-
tuously and travel for longer distances. Di�erences in distance estimates could also be the
result of the study sites corresponding to di�erent habitats with inconsistent satellite recep-
tion, such as an open grassland versus a canopied woodland, and so the individuals that
spend more time in woodland habitat appear to move more than their grassland counter-
parts. Unfortunately, there is no sure way to discriminate these possibilities with commonly
used methods. Furthermore, because these biases also depend on the animals' movement
characteristics, it not generally su�cient to make error-naive comparisons even if the tracking
device, sampling schedule, and habitat are all identical (e.g., Noonan et al., 2019, Fig. 4c).
Di�erential bias is especially likely to happen in repeated studies over time, as older devices
are replaced by newer device models, and in studies where di�erent researchers collected
data in di�erent habitats and with di�erent tracking devices. As movement data continue to
amass and larger, collaborative studies become increasingly possible, this issue will only in-
crease in importance. For instance, Morato et al. (2016) compared the movement behaviors
of 44 jaguars across 5 biomes with 5 di�erent model GPS tracking devices, which was �the
largest collection of jaguar movement data analyzed to date.� Combinations of GPS and
Argos Doppler-shift tracking data are also common in marine systems (e.g., Phalan et al.,
2007; Raymond et al., 2015; Citta et al., 2018).

As location data may be applied to a variety of purposes in ecology, we suggest that
the collection and analysis of GPS calibration data needs to become standard practice for
researchers and managers in the short term. The error-model-selection framework we have
introduced here consists of statistically e�cient parameter estimators, AICC formulas, and
a goodness-of-�t statistic (Z2

red)�all custom-derived for working with error-laden location
data. As we have shown in App. S4, GPS tracking devices output a variety of data related to
location error and can exhibit a variety of error structures. At this time, model selection is
often necessary to ensure that location error is accurately described, but consumer pressure
on manufacturers could ease this burden considerably, as we detail below.

For existing and near-future tracking data, it would also be useful to have a repository of
calibration data, sorted by device make and model, for researchers to draw from. For many
historical datasets, the original tracking devices no longer exist or are no longer functional,
and even today the choice to collect adequate calibration data can sometimes come at the
cost of tracking fewer individuals. Our curated calibration dataset (Fleming et al., 2020),
featuring 190 devices comprising 27 models from 14 manufacturers, is a �rst start toward
this goal.

Manufacturer Recommendations

We suggest that the task of calibration and error-model selection (Fig. 1) be performed by
GPS device manufacturers, as is the case with Argos Doppler-shift horizontal errors, by
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reporting
√

2-standard-deviation error circles or equivalent. At a minimum, all error infor-
mation from the GPS module should be returned and calibration data should be provided�
preferably per device and at di�erent sampling rates if on-board error �ltering varies. More-
over, complete version and build information are also necessary to know which calibration
parameters can be expected to be applicable across devices.

On a lower level, we note that Argos o�ers both Kálmán-�ltered Doppler-shift location
estimates and un�ltered (least-squares) location estimates. This kind of choice would also
be appealing to GPS consumers. Researchers that process their own data with software
packages such as crawl and ctmm can potentially obtain better precision with un�ltered
data, instead of processing the same data twice over. Error ellipses would also be bene�cial
for GPS tracking data in some cases and GSM tracking data in most cases.

Device performance

It is straightforward to answer the question of which GPS devices have the smallest errors
in a given environment. However, such a comparison would be limited to the speci�ed
environment. Our Z2

red goodness-of-�t statistic provides a di�erent comparison that addresses
which device has the more predictable distribution of location errors. In other words, a
small Z2

red indicates that the device gives fair warning of large errors, with few false alarms.
Moreover, Z2

red does not require that environmental conditions be controlled for, and so
these statistics can be compared more generally. Smaller values of Z2

red indicated better
error-model (e.g., DOP-value) performance, and Z2

red = 1 results when the location errors
are properly calibrated and the resulting UEREs are normally distributed, which is not an
unreasonable assumption (Kaplan and Hegarty, 2006). In general, less informative DOP
values will fail to explain heteroskedasticity and produce heavier tailed UERE distributions
and larger values of Z2

red. For the 27 GPS, cellular, and VPS device models we analyzed, the
AICC-best error models produced Z2

red statistics ranging from 1.3�4.2, with a median value
of 2.3 (Table 2).

Beyond the Z2
red statistic, at least two other measures of error performance are necessary

for a comprehensive comparison�the RMS location error under ideal conditions (RMSEmin)
and a standardized measure of DOP-value response to satellite-signal attenuation. Though
the calibration data we analyzed were not collected for this task, we can report RMSEmin

values between 1.7 and 21 meters (Table 2), with the smaller location errors likely being
the result of dual-frequency GPS receivers and multiple location �xes processed by an on-
board Kálmán �lter. Speci�cally, devices may condition the current location estimate on
past data, under an assumed movement and location-error model, possibly also leveraging
Doppler-shift information. Some devices �lter all location estimates, keeping the constituent
data unreported at coarse sampling rates, while other devices only apply �ltering when the
sampling rate reaches a speci�c threshold (∼1 Hz). On this point we also caution researchers
that devices with on-board �ltering may have smaller RMS UERE parameters at higher �x
rates, and, as such devices warm up, these parameters can continue to shrink until they
reach an asymptote.

For 22% (9�42%, population CI) of tracking device models, their recorded DOP values
were misinformative, in that they provided worse information on location error than a simple
model of homoskedastic errors, and so using them could actually have a deleterious e�ect
on analysis. Because informative DOP values are necessary to account for the many sources
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of heteroskedasticity in tracking data, they can be important in many situations, such as
if animals traverse through habitats of di�ering satellite reception. For instance, animals
that burrow or rest under trees might appear to be scattering about ∼100 meters when
not moving, without informative DOP values to explain the increase in variance. In these
cases, researchers should attempt to collect calibration data in di�erent environments, as
an approximate correction, but such calibration data are unlikely to exactly reproduce the
same quality location estimates as the animal, and habitats may di�er between the location
estimate and the true location.

Finally, we note that none (0%�52%) of the 25 GPS tracking devices we analyzed had
particularly informative VDOP values, where the null model based on VDOP outperformed
models using HDOP values or our number-of-satellites model (S3.1) as proxies for vertical
error, or even a homoskedastic model. Informative VDOP values are necessary for an ac-
curate assessment of vertical errors, and 12 of the devices we tested were GPS tags, rather
than collars, which would be applied more often to aerial or arboreal species. These data
are increasingly needed in good quality, considering human impacts in the airspace, such as
wind farms, buildings, planes, power lines, etc. (Lambertucci et al., 2015; Ross-Smith et al.,
2016; Péron et al., 2017; Poessel et al., 2018a).

Error model performance

Particularly with older Argos Doppler-shift location data, which only feature location class
information (3,2,1,0,A,B,Z), several analyses have employed t-distributed location errors, as
the error distributions within location classes are heavy tailed (Jonsen et al., 2005; Hoenner
et al., 2012; Albertsen et al., 2015; Brost et al., 2015). Error models that fail to capture the
heteroskedasticity of satellite location data will generally be heavier tailed (c.f., Fig. S4.2).
This holds for both historical Argos Doppler-shift location data and GPS location data with
inadequate error-model performance (e.g., data that lack informative DOP values). While t-
distributed errors are readily available in R package Template Model Builder (TMB; Albertsen
et al., 2015; Péron et al., 2017; Auger-Méthé et al., 2019), heavy-tailed error distributions
eventually need to be incorporated into the more user-friendly R packages, such as crawl

(Johnson et al., 2008; Johnson, 2008) and ctmm (Fleming and Calabrese, 2015; Calabrese
et al., 2016). As pointed out by Albertsen et al. (2015), there are straightforward and
reliable approximations for heavy tailed error distributions implemented in TMB, which can
also be implemented in similar frameworks like crawl and ctmm.

On the other hand, technological advances, such as solar-powered GPS tags, now allow
very high sampling rates to be sustained for long periods of time (App. S4.3.2). These
new data introduce several complications when it is necessary to account for location errors.
First, as the sampling interval falls below 1�2 minutes, GPS location errors become auto-
correlated (Tao and Bonnifait, 2015). Second, many GPS devices employ on-board �lters to
post-process high-frequency location estimates and shrink their errors, which comes at the
cost of increased location-error autocorrelation. As these data become increasingly common,
the calibration models and estimators introduced here will need to be upgraded from in-
dependently sampled errors to autocorrelated errors. The accommodation of location-error
autocorrelation may also be necessary for VPS data (App. S4.14.1), though further testing is
warranted. Generalizing the methods introduced here to incorporate autocorrelated location
errors is a largely straightforward, though tedious, computational task.
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When using the independent and identically distributed (IID) UERE methods presented
here on high-resolution GPS tracking data, we can approximate the resulting biases as fol-
lows. If ∆t is the sampling interval, then e�ective sample sizes are overestimated by an
in�ation factor on the order of I ≡ (1 min)/∆t. AICC di�erences will be overestimated
by a factor on the order of I, which will overstate di�erences in model performance if not
accounted for. UERE variance parameters will be relatively underestimated by a factor on
the order of I/N , where N is the nominal sample size assuming independence. However,
this bias is quite minor in calibration datasets that sample for an hour or more. In any case,
we recommend collecting calibration data over the course of a day, if not many days.

Simultaneous estimation as a last resort

The simulation example considered by Auger-Méthé et al. (2016) represents a more extreme
case of lack of identi�ability between relatively featureless, discrete-time movement and
error models, though model misspeci�cation can produce worse outcomes. If estimating
movement and location error simultaneously, it is important to enforce as much distinguishing
structure as possible on the two processes, to increase identi�ability in their parameters. One
example of distinguishing structure is the heteroskedasticity of location error, as captured by
informative DOP values. It is unlikely that an individual's �nescale displacements will scale
with DOP values as well as location error, and therefore homoskedastic errors, as simulated
in Auger-Méthé et al. (2016), are much more vulnerable to issues of identi�ability than
heteroskedastic errors (Fig. 4). Another feature that distinguishes the movement and error
processes are their contrasting autocorrelation structures. GPS location errors are typically
not substantially autocorrelated at sampling intervals > 1-2 minutes (Tao and Bonnifait,
2015), while the movement processes of large mammals are typically correlated for days to
weeks (McNay et al., 1994; Rooney et al., 1998; Boyce et al., 2010; Fleming et al., 2014a,b;
Morato et al., 2016). Because of this separation of scales, irregular sampling is helpful for
teasing apart movement from error, given an appropriate continuous-time movement model.
In contrast, shoehorning irregularly sampled data into a discrete-time framework will result
in a loss of this useful information.

When forced to �t movement- and error-model parameters simultaneously, we suggest two
checks for validity. First, the error-parameter estimates should be plausible. For example,
the RMS UERE should be around 10 meters for GPS telemetry. Second, the autocorrelation
structure of the data should be adequately explained by the combined model of movement
and error. Variograms are particularly useful for this task, because they provide unbiased
estimators of autocorrelation (Cressie, 1993; Fleming et al., 2014a). As the autocorrelation
of tracking data consists of both movement and location-error autocorrelation, and as loca-
tion errors are typically heteroskedastic, we derive error-informed variogram algorithms in
App. S6 (Fig. S6.1).

Error-informed analyses

The number of movement analyses based on continuous-time state-space models, which can
allow for both irregular sampling and location error, is steadily expanding (e.g., Breed et al.,
2017; Michelot and Blackwell, 2019). However, there remain several analytic tasks that
have yet to be formulated in a way that accounts for location error. Primary among these
tasks are resource selection and home-range estimation. Resource selection with uncertain
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location data is a straightforward challenge that can be addressed by incorporating an ob-
servation model. Non-parametric home-range estimation is less obvious. The more general
problem of kernel density estimation with measurement error is conventionally approached
by `deconvolving' or de-smoothing the kernels according to the spread of the error (Stefan-
ski and Carroll, 1990). However, it is straightforward to show that this approach will not
generally produce an asymptotically consistent estimator, meaning that the estimate will
not converge to the truth in the limit of in�nite data, as the individual kernels remain bi-
ased in their spread. The method we applied here, which involves Gaussian smoothing of
the data (Fleming et al., 2016) and error-informed bandwidth optimization, is relatively ad
hoc but is ensured to produce a density estimate of appropriate scale. Future home-range
estimators will need to both optimally weight the data, in the sense of Fleming et al. (2018),
so that more erroneous location estimates are treated as less informative, and smooth the
data conditional on the kernel density estimate, rather than on a normal approximation
of the density function. The latter is needed to shrink the estimate in towards the data,
rather than, simply, the mean of the data. Finally, we note that the error-informed statistics
for outlier detection introduced in App. S5 assume circular error distributions and could be
improved for Argos Doppler-shift, triangulated VHF, and light-level geolocator-derived data.

User-friendly R software packages that can incorporate the kind of heteroskedastic loca-
tion errors we model here include crawl (Johnson et al., 2008; Johnson, 2008), ctmm (Fleming
and Calabrese, 2015; Calabrese et al., 2016), move (Kranstauber et al., 2012), momentuHMM
(McClintock and Michelot, 2018), and smoove (Gurarie et al., 2017). The methods and
models we have introduced are implemented in the R package ctmm, complete with long-
form documentation vignette("error"). Based on the calibration results presented here
(Apps. S2-S4), error model selection is obviated in ctmm for Argos Doppler-shift, e-obs,
Telonics, Vemco, and many other device models. Going forward, we envision both error
modeling and error-informed animal movement analysis becoming more necessary, more user
friendly, and more accurate.

Final remarks

GPS location error has historically been ignored because the magnitude of these errors have
been negligible, relative to the scales of movement. However, improvements in the temporal
resolution of tracking data, device miniaturization for smaller taxa (Kays et al., 2015), and
an increase in multi-study analyses (Tucker et al., 2018, 2019; Noonan et al., 2020b) all
escalate the need for reliable statistical methods that can account for location error. We have
presented a major step towards achieving this goal, by deriving a comprehensive framework�
from experimental design to error-model selection, error-model performance evaluation, and
error-informed analyses�with the capability to pin down the observation model of animal
tracking data and tame its heteroskedastic errors. Our framework allows tracking data to
more directly and more accurately inform ecological analyses, now and going forward. This
work should provide strong guidelines for both researchers and manufacturers in wildlife
ecology and conservation biology, as well as other �elds where data represent processes of
interest and error processes that are di�cult to tease apart.
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Argos Satellite system for geolocation, based on the Doppler e�ect

with satellites in polar orbits. This system is often used to

upload GPS location data.

DOP `Dilution of precision', a relative measure of RMS location error.

GDOP `Geometric dilution of precision', an aggregate of PDOP and

TDOP.

GNSS `Global navigation satellite system', a catch-all term for satel-

lite navigation systems, including America's GPS, Russia's

GLONASS, China's BDS, and India's NAVIC.

GPS `Global Positioning System' for geolocation, based on trilatera-

tion with satellites in medium earth orbits.

GSM `Global System for Mobile Communications' standard for cel-

lular networks that provides information useful for location es-

timation. This system is often used to upload GPS location

data.

HDOP `Horizontal dilution of precision', a relative measure of RMS

horizontal location error.

HPE `Horizontal position error', which is only provided as a relative

measure of RMS horizontal location error in VPS location data.

Kálmán �lter A state-space method for conditioning on past data to improve

the current location estimate. This method can be used in real

time and is sometimes employed on GPS and GSM devices.

Kálmán smoother A state-space method for conditioning on all data to improve

location estimates.

multipath error Location-estimate errors caused by indirect signals as the result

of re�ection or di�raction.

PDOP `Position dilution of precision', an aggregate of HDOP and

VDOP.

RMS `Root mean square' statistic, which is equivalent to the standard

deviation in one dimension.

TDOP `Time dilution of precision', a relative measure of RMS temporal

error.

UERE `User equivalent range error', which is location error partially

standardized by DOP value.

VDOP `Vertical dilution of precision', a relative measure of RMS ver-

tical location error.

VPS `Vemco positioning system', an acoustic telemetry system based

on trilateration with stationary receivers.

Table 1: Glossary of terms
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Z2
red

Device # Best model Joint Ind. RMSEmin (m)

ATS G2110e 19 ˆHDOP(Nsat)× TTF2 2.9 2.8 2.4�2.5

ATS G5-2D 4 homoskedastic† 1.5 1.5 3.5�3.6

ATS G10 UltraLITE 15 ˆHDOP(Nsat)
† 2.9 2.7 21.0�21.3

CTT 1090 3 HDOP 4.6 4.3 8.7�10.3

CTT ES400 15 ˆHDOP(Nsat)
† 2.4 2.3 3.9�4.0

CTT BT3 8 HDOP 4.3 4.0 9.0�9.3

e-obs generation-1 (1059�1078) 17 �horizontal accuracy� 2.1 2.0 5.8�6.1

e-obs generation-3 (5081�6375) 15 �horizontal accuracy� 1.3 1.3 1.70�1.72‡

e-obs generation-3 (6577�6752) 6 �horizontal accuracy� 2.5 1.9 2.6�2.7

e-obs generation-3 (7095�7106) 5 �horizontal accuracy� 1.8 1.7 2.5�2.6

e-obs generation-3 (7401�7405) 3 �horizontal accuracy� 2.5 2.4 2.8�2.9

GlobalTop PA6H 1 homoskedastic NA 1.5 2.7�2.9‡
Lotek Lifecycle 330 12 homoskedastic 2.3 1.2 NA

Lotek PinPoint 240 2 DOP & is(timeout) 2.5 2.4 8.0�8.7

Lotek WildCell GPS-GSM 5 is(validated) 1.8 1.5 NA

NTT Decomo CTG-001G 3 �error� 1.9 1.9 3.1�3.4

Ornitela 20 gram (182902�182928) 6 homoskedastic 2.2 1.6 NA

Ornitela 25-gram (191771�191779) 6 homoskedastic 3.4 2.1 NA

Sirtrack Pinnacle Solar G5C275F 3 TTF ≥ 32 sec 4.2 4.2 1.63�1.68

Technosmart GiPSy 5 2 ˆHDOP(Nsat) 2.1 2.1 10.1�10.5

TS Quantum 4k Enhanced 2 HDOP & is(2D) 2.4 2.4 6.5�7.4

Telonics Gen4 GPS-VHF 3 HDOP & is(QFP) 1.9 1.8 4.8�5.1

Telonics Gen4 GPS-Iridium 3 HDOP & is(QFP) 1.7 1.7 2.6�3.0

UniKN Logger 3 ˆHDOP(Nsat) 2.1 2.1 9.3�10.1

Vectronic GPS Plus 6 �error� 1.5 1.4 3.7�4.9

Vectronic Vertex Lite-3D 18 DOP 2.5 2.4 16.3�16.9

Vemco HR2-V9 VPS 6 HPE 2.1 1.4 NA

Table 2: Selected horizontal error models, detailed in App. S4, with corresponding goodness-
of-�t statistics (Z2

red) and root-mean-square location error given ideal reception (RMSEmin)
for 27 GPS and VPS device models, where `#' denotes the number of devices sampled. The
Z2

red statistic assesses the performance of a device's error model, where a lower value indicates
more informative DOP values and a shorter tailed UERE distribution. Z2

red statistics are
given for both the joint error model, assuming all devices of the same type are equivalent,
and the individualized error model, assuming all devices of the same type have unrelated
error parameters. If these two statistics are close, then error calibration can be assumed
to be transferable among devices of this type. †Performance of the selected model was not
signi�cantly better than the null HDOP model. ‡This performance was obtained in 1-Hz
data.
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Figure 1: Proposed work�ow to account for location error in animal movement analysis,
with the three most critical steps highlighted. We note that most of these steps are avoidable.
In particular, if the tracking data are supplied pre-calibrated, then researchers can proceed
immediately to error-informed movement analysis.

Figure 2: Demonstration of how ignored heteroskedasticity (time-varying variance) can
lead to heavy-tailed distributions. In subpanel A, the location-error distribution is given
for the most common variance, as a representative example. This distribution is Gaussian
with 10-meter RMS error, and is light tailed. In subpanel B, 10 random HDOP values are
drawn with resulting location-error distributions overlayed. Each individual distribution is
light tailed, but the scale of location error varies dramatically among them. In subpanel
C, the average location error is considered, which is proportionally t-distributed. This �nal
distribution is what is considered when ignoring heteroskedasticity, and is heavy tailed.

Figure 3: Simulated animal tracks with location error (A-B) and a visual analysis of outliers
(C-F). In the �rst column, an outlier is introduced�colored blue in the �rst and third rows�
where the corresponding horizontal dilution of precision (HDOP) value is underestimated
by a factor of 50. The second column contains the same location estimates as the �rst
column, but where all HDOP values are accurate. Scatter plots are provided in the �rst
row, with 95% error circles. Error-informed speed and distance estimates are calculated and
used to color the data in row two, where fast transits are more blue and remote locations
are more red. Finally, the same speed and distance point estimates from the second row
are given con�dence intervals and plotted in the third row. `Minimum speed' refers to the
minimum speed capable of explaining the data, while `core deviation' refers to distance from
the median location (see App. S5 for precise explanation of these quantities). The obvious
outlier in panels A & E is not an outlier in panels panels B & F.

Figure 4: GPS data with 95% error circles (red) and occurrence distributions (blue) for a
common noddy (Anous stolidus), as calculated from the AIC-best continuous-time movement
model �t (A) simultaneously with a homoskedastic location-error model, (B) simultaneously
with a PDOP-informed error model, and (C) with a calibrated PDOP error model. Subpanels
A-B represent the conventional application of state-space models, which simultaneously �t
movement and error model parameters, while subpanelC represents the calibration approach
we advocate. Compared to the best location-error model (C), the simultaneously �t error
model without PDOP information (A) overestimates the �x-location uncertainty by a factor
of 970 and the overall occurrence area is larger by a factor of 2.4. By better distinguishing the
covariance structure of the movement and error models, simultaneously �tting the PDOP-
informed error model (B) reduces these factors of 160 and 1.04 respectively.
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Figure 5: 95% home-range estimates with 95% CIs for an Argos-tracked night-heron versus
the worst location class included in the data, with less-accurate location classes censored for
that estimate, where the black points correspond to conventional kernel density estimates
(KDE) and the blue points correspond to error-informed autocorrelated kernel density esti-
mates (AKDE). The Argos location classes 3,2,1,A,0,B are sorted by accuracy, and so the �rst
estimates at `3' only include data from the most accurate location class, and therefore have
the smallest sample size, while the �nal estimates at `B' include data from location classes
3�B, and are the largest when not accounting for location errors. Only the error-informed
estimates are consistent across included location classes, though the e�ective sample size
drops precipitously when only including location class 3. Note the logarithmic scale on the
y-axis.

Figure 6: 2017 (red) and 2018 (blue) summer ranges of a night heron, as given by (A)
Argos Doppler-shift error ellipses zoomed out to their largest location-error scale, (B) the
same Argos error ellipses zoomed in to the inferred home-range scale, (C) conventional KDE
home ranges, and (D) error-informed AKDE home range. All contours depict the 95%
coverage areas. The conventional KDE estimate is in�ated from location error, which makes
the two summer ranges appear more similar than they are.

Figure 7: Mean speed estimates with 95% CIs (where available) for a GPS-tracked wood
turtle versus the worst horizontal dilution of precision (HDOP) value included in the data.
The black points correspond to conventional straight-line distance (SLD) estimates and the
blue points correspond to an error-informed continuous-time speed and distance (CTSD)
estimator based on time-series Kriging (Noonan et al., 2019). The �rst estimate only includes
location �xes with HDOP ≤ 4, while the �nal estimate includes all of the data. Only the
error-informed estimates are consistent across all included HDOP values, though the lowest
HDOP locations will be biased towards open habitats.
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S1 Sensitivity analysis

S1.1 Sensitivity analysis via simulation of errors

If θ̂(data) is the output of some analysis conditioned on the data that does not account for
location error, and θ̂(data + errorsim) is the output of the same analysis, but with additional
simulated location error added to the original data (atop its unknown location error), then
the second-order variance induced by location error is simply the variance of the estimates
θ̂(data + errorsim), with respect to the ensemble of simulations, and is additive. The second-
order bias induced by location error is given by the di�erence in the average simulated
analysis and the unaltered analysis〈

θ̂(data)− θ̂(truth)
〉

error
=
〈
θ̂(data + errorsim)− θ̂(data)

〉
sim

+ O
(
error4

)
, (S1.1)

where 〈· · · 〉X denotes the expectation value with respect to the process X, data = truth +
error, and O(error4) denotes higher-order corrections, including VAR[error]2, which require
an error-informed analysis to determine. The only assumptions made here are that θ̂(data)
is analytic in the neighborhood of θ̂(truth), and that the distribution of errors is symmetric,
which includes the errors being of mean zero.

S1.2 Sensitivity analysis via simulation of trajectories

As a slight improvement, here we upgrade the previous analysis from estimates based on
θ̂(data) to estimates based on θ̂(prediction|data), where `prediction' refers to the Kriged
location estimates, which are conditioned on the data and �tted movement model (Fleming
et al., 2016). The second-order variance induced by location error is the variance of the
estimates θ̂(trajectory|data), where `trajectory' refer to simulated locations conditioned on
the data and �tted movement model, which are centered on the conditional predictions
(Fleming et al., 2017). The second-order bias induced by location error is given by the
di�erence in the average simulated analysis and the analysis based on the Kriged estimates〈

θ̂(prediction|data)− θ̂(truth)
〉

error

=
〈
θ̂(trajectory|data)− θ̂(prediction|data)

〉
trajectory

+ O
(
error4

)
. (S1.2)
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S2 Error-model statistics

S2.1 Single-UERE estimation

Here we derive the minimum variance unbiased (MVU) estimator for the mean-square UERE,
〈UERE2〉, given calibration data where the GPS tag/collar is at rest. Lack of bias and low
variance is important so that multiple (possibly opportunistic) calibration datasets can be
safely pooled regardless of size. Achieving the MVU property requires an assumption of
normality in the distribution UEREs, which can still allow for a heavy-tailed distribution of
location errors. For more general UERE distributions, these estimators are still unbiased.

In two dimensions, the RMS UERE,
√
〈UERE2〉, serves as the proportionality constant

relating RMS location error and HDOP value√
VAR[x(t)] + VAR[y(t)] = HDOP(t) ·

√
〈UERE2

H〉 , (S2.1)

VAR[x(t)] + VAR[y(t)] = HDOP(t)2 · 〈UERE2
H〉 , (S2.2)

where UEREH denotes horizontal UERE values. As GPS satellite coverage is relatively
uniform, GPS location errors will generally be circular on average, in contrast to Argos
Doppler-shift errors where there are only a few satellites in polar orbits. There are exceptions
to the assumption of circular errors (Fig. S2.1), but GPS tracking devices do not record error-
ellipse information, so there is little that can be done in these cases.

Given circular location errors, we have

VAR[x(t)] = VAR[y(t)] =
1

2
HDOP(t)2 · 〈UERE2

H〉 , (S2.3)

and similarly for the vertical dimension we have

VAR[z(t)] = VDOP(t)2 · 〈UERE2
V〉 , (S2.4)

where in practice the horizontal and vertical RMS UERE values are not equal.
Let k index the K calibration datasets, with each corresponding to identical tags/collars

at �xed locations µk. The MVU mean-location estimators are then given by the weighted
average

µ̂k =
1

Wk

nk∑
i=1

wk(ti) rk(ti) , wk(t) =
q

DOPk(t)2
, Wk =

nk∑
i=1

wk(ti) , (S2.5)

where rk(t) = (xk(t), yk(t)) in two dimensions. From hereon we keep our relations general
with q = dim(r) denoting the number of spatial dimensions (q = 2 for horizontal and q = 1
for vertical. The MVU mean-square UERE estimator is

〈 ˆUERE
2
〉 =

1

q

1

N−K

K∑
k=1

nk∑
i=1

wk(ti) |rk(ti)−µ̂k|
2 , N =

K∑
k=1

nk , (S2.6)

given N total sampled times for the K calibration datasets. The sampling distributions are
given by

µ̂k ∼ N(µk,W
−1
k 〈UERE2〉) , q (N−K)

〈 ˆUERE
2
〉

〈UERE2〉
∼ χ2

q(N−K) , (S2.7)
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Figure S2.1: Error-model residuals from GPS calibration data where the tag was placed on
the side of a tree. As the tree blocks out half of the sky, the spread in satellites is narrower
along the axis perpendicular to the tree, which results in larger errors along that axis. Other
situations where GPS location errors are elongated include when obtaining location �xes
alongside cli�s or buildings.
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and the standardized or �studentized� residuals are given by

zk(t) =

√
wk(t)

〈 ˆUERE
2
〉

(rk(t)− µ̂k) , (S2.8)

which can be checked for substantial deviance from normality or autocorrelation, as in
Fig. S4.1.

S2.1.1 Single-UERE model selection

There are several situations where model selection is useful when calibrating data. First,
while DOP values are usually informative, we do not always know the best proxy for the
location-error variance (c.f., Sec. S3). Second, we may be unsure as to whether di�erent
devices share the same UERE parameters. Third, we may be unsure as to whether or
not di�erent location classes share the same UERE parameters. Therefore, it is useful to
have AICC values to facilitate model selection. AIC values estimate the Kullback-Leibler
divergence between the �tted model and true model (Burnham and Anderson, 2002). In sit-
uations where sample sizes are small and debiased parameter estimates di�er substantially
from maximum-likelihood (ML) parameter estimates, then AICC values can di�er substan-
tially from regular AIC values. Standard AICC formulas are speci�c to maximum-likelihood
estimation with a simple error model, whereas here we do better than ML estimation with
more complex error models.

Following analogous calculations in (Calabrese et al., 2018; Fleming et al., 2019), unbi-
ased AICC values must satisfy the cross-validated log-likelihood, or double expectation 〈〈· · · 〉〉
(over both the data and estimates calculated from independent data) of the log-likelihood
function, regardless of whether or not the estimates are derived from maximizing said like-
lihood function.

〈AICC〉 =
〈〈
−2 `

(
〈 ˆUERE

2
〉, µ̂
∣∣∣ r)〉〉 , (S2.9)

=
K∑
k=1

nk∑
i=1

(
q

〈
log 2π

〈 ˆUERE
2
〉

wk(ti)

〉
+

〈
wk(ti)

〈 ˆUERE
2
〉

〉〈〈
|rk(ti)−µ̂k|

2〉〉) , (S2.10)

=
K∑
k=1

nk∑
i=1

(
q

〈
log 2π

〈 ˆUERE
2
〉

wk(ti)

〉
+

〈
wk(ti)

〈 ˆUERE
2
〉

〉
q

(
〈UERE2〉
wk(ti)

+
〈UERE2〉

Wk

))
,

(S2.11)

= q

K∑
k=1

nk∑
i=1

〈
log 2π

〈 ˆUERE
2
〉

wk(ti)

〉
+ q (N+K)

〈
〈UERE2〉
〈 ˆUERE

2
〉

〉
, (S2.12)

= q

K∑
k=1

nk∑
i=1

〈
log 2π

〈 ˆUERE
2
〉

wk(ti)

〉
+
q2(N+K)(N−K)

q (N−K)− 2
, (S2.13)

and so by the Lehmann-Sche�é theorem (Lehmann and Sche�é, 1950, 1955), the MVU AICC

values must be given by

AICC = q
K∑
k=1

nk∑
i=1

log 2π
〈 ˆUERE

2
〉

wk(ti)
+
q2(N+K)(N−K)

q (N−K)− 2
, (S2.14)
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which one can check for asymptotic consistency with the standard AIC formula.

S2.1.2 Single-UERE goodness of �t

AICC di�erences allow us to rank our models' expected predictive capability, but these
di�erences scale with sample size and so they do not indicate how well the models perform
in an absolute sense. If our variance model was �xed and our comparison was among trend
models, µ, then we might consider the reduced χ2 statistic to index goodness of �t. However,
our trend model is �xed and we are comparing variance models, and so we derive a reduced
Z2 statistic that is analogous to the familiar reduced χ2 statistic.

We start by considering the �internally� studentized residuals, as goodness of �t can be
measured by their closeness to unity.

u2
ki =

wk(ti)

〈 ˆUERE
2
〉
|rk(ti)−µ̂k|

2

q
, (S2.15)

These square residuals are not exactly F -distributed because the numerators and denomi-
nators are not independent. Next we apply a trick due to Thompson (1935), decomposing
all terms into independent variates.

|rk(ti)−µ̂k|
2 = α2

ki |rk(ti)−µ̌ki|
2 , (S2.16)

〈 ˆUERE
2
〉 = β 〈 ˇUERE

2

ki〉+
αki

N−K
wk(ti)

|rk(ti)−µ̌ki|
2

q
, (S2.17)

αki =
Wk−wk(ti)

Wk

≤ 1 , (S2.18)

β =
N−K−1

N−K
≤ 1 , (S2.19)

where all θ̌ki-estimates are calculated leaving out the kith observation, and then the �exter-
nally� studentized residuals

t2ki =
wk(ti)

〈 ˇUERE
2

ki〉
|rk(ti)−µ̌k|

2

q
=

β u2
ki

α2
ki −

αki
N−Ku

2
ki

∼ F q
q(N−K−1) , (S2.20)

are exactly F -distributed. Importantly, there is a one-to-one correspondence between the
internally studentized u2 and externally studentized t2 statistics, and so it does not matter
which statistic we base our index on. Furthermore, relation (S2.49) is particularly useful
because direct calculation of all t2ki statistics via the leave-one-out θ̌-estimators has a com-
putational cost of O(N2), whereas calculation here via uki has a computational cost of only
O(N).

Again, goodness of �t can be measured by t2 being close to unity. Both small values of
t2, where the model variance is too large, and large values of t2, where model variance is too
small, are equally bad and so we proceed to Fisher's Z-distribution

Zki =
1

2
log t2ki , (S2.21)
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which places extreme values of t2 on the same relative scale, with a variance model that is a
factor too small being just as bad as a variance model that is a factor too large. Goodness of
�t is now determined by the proximity of Z to zero, and lack of performance can be inferred
from the magnitude of Z2, which for all ik has an expectation value being only a function
of the degrees of freedom. Our reduced Z2 statistic is given by

Z2
red =

1

N 〈Z2〉

K∑
k=1

nk∑
i=1

Z2
ki , 〈Z2

red〉 = 1 , (S2.22)

where, Z2
red � 1 indicates an over-performing model, Z2

red ≈ 1 indicates a well-performing
model, and Z2

red � 1 indicates an under-performing model, all relative to a true Gaussian
model. If the true UERE distribution is not Gaussian, the reduced Z2 statistic can still be
used to compare performance across error models, only the value of 1 no longer separates over-
performance from under-performance. In this context, over-performance indicates that the
square errors are exceptionally proportional to the model variances, while under-performance
indicates a weaker relationship between the two quantities. For example, bivariate Laplace
errors with correctly modeled variance will produce Z2

red ∼ 1.75 when using the Gaussian
formula for 〈Z2〉. Even more extreme, bivariate Cauchy errors�which do not admit a
�nite variance�limit to Z2

red ∼ 5.8 with large N . All else being equal, a more heavy-tailed
distribution will give rise to a larger value of Z2

red under the normal assumption.
Finally, for any Z = 1

2
log t2, where t2 ∼ F d1

d2
as above, the desired second moment 〈Z2〉

is straightforwardly calculated to be

〈Z2〉 =

〈(
1

2
log

χ2
d1

d1

)2
〉

+

〈(
1

2
log

χ2
d2

d2

)2
〉
− 2

〈
1

2
log

χ2
d1

d1

〉〈
1

2
log

χ2
d2

d2

〉
, (S2.23)

in terms of the normalized log-χ2 moments〈
1

2
log

χ2
d

d

〉
= −1

2

(
log

(
d

2

)
− ψ

(
d

2

))
, (S2.24)〈(

1

2
log

χ2
d

d

)2
〉

=

〈
1

2
log

χ2
d

d

〉2

+
1

4
ψ′
(
d

2

)
, (S2.25)

where ψ(z) = d
dz

log Γ(z) is the digamma function and Γ(z) = (z−1)! is the gamma function.

S2.1.3 Mean-zero processes

The simpli�cations to the previous formulas for mean-zero process calibration, such as ve-
locity, are

K = 0 , α = 1 . (S2.26)

S2.2 Multi-UERE estimation

There are several situations where multiple RMS UEREs need to be estimated. Many
GPS modules record di�erent quality locations, including 2D, 3D, �quick �xes� resolved and
unresolved, but no HDOP information or their HDOP values derive from di�erent methods
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and are not on the same scale. In some cases, unresolved location quality can only be inferred
from missing attributes like speed and altitude, or from the �x time reaching its maximum
value, which requires one RMS UERE value for �x times below the threshold value and a
larger RMS UERE value for timed-out �xes.

When there are C > 1 location classes for which we need to estimate C RMS UERE pa-
rameters, we cannot derive MVU estimators, but we can derive residual maximum likelihood
(REML) estimators that reduce to MVU when C = 1. Let c index the C location classes,
and de�ne the indicator function

δck(t) =

{
1 , location class of tag k at time t is c
0 , location class of tag k at time t is not c , (S2.27)

then the REML log-likelihood function is

` =− 1

2

C∑
c=1

K∑
k=1

nk∑
i=1

δck(ti)

(
q log 2π

〈UERE2
c〉

wk(ti)
+

wk(ti)

〈UERE2
c〉
|rk(ti)−µ̂k|

2

)

− q

2

K∑
k=1

log 2π
C∑
c=1

nk∑
i=1

δck(ti)
wk(ti)

〈UERE2
c〉
, (S2.28)

where the last term on the right hand side is the REML correction to the regular log-
likelihood function.

The mean-square UERE and mean location estimating equations are given by

〈 ˆUERE
2

c〉 =
1

q ˆDOFc

K∑
k=1

nk∑
i=1

δck(ti)wk(ti) |rk(ti)−µ̂k|
2 , (S2.29)

µ̂k =
1

P̂k

C∑
c=1

nk∑
i=1

δck(ti)
wk(ti)

〈 ˆUERE
2

c〉
rk(ti) , (S2.30)

given the DOF and precision-weight estimates

ˆDOFc =

Nc︷ ︸︸ ︷
K∑
k=1

nk∑
i=1

δck(ti)−

K̂c︷ ︸︸ ︷
K∑
k=1

P̂ck

P̂k
, (S2.31)

P̂k =
C∑
c=1

P̂ck , (S2.32)

P̂ck =

nk∑
i=1

δck(ti)
wk(ti)

〈 ˆUERE
2

c〉
, (S2.33)

where the second term on the right-hand-side of (S2.31) is the REML correction to the MLE.
We solve the estimating equations iteratively, by evaluating the above relations in reverse
order, starting with an initial guess for the RMS UEREs. In the case of one location class
(C = 1), this algorithm converges in one iteration. For C > 1, convergence is at worst
quadratic and machine precision is typically achieved in a few iterations.
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E�ectively, the K lost degrees of freedom are distributed across the C RMS UERE
estimates (Kc), according to the precision weights Pck, as it is straightforward to show that〈

K∑
k=1

nk∑
i=1

δck(ti)
wk(ti)

〈UERE2
c〉
|rk(ti)−µ̂k|

2

〉
= DOFc , (S2.34)

at the true RMS UERE values, and the total number of degrees of freedom are indeed N−K.
The residuals are given by

zk(t) =

√
wk(t)

〈 ˆUERE
2

c〉
(rk(t)− µ̂k) where δck(t) = 1 . (S2.35)

From the Hessian of the REML log-likelihood function, the sampling distributions of
interest are asymptotically given by

µ̂k ∼ N(µk, P
−1
k ) , q dofc

〈 ˆUERE
2

c〉
〈UERE2

c〉
∼̇ χ2

q dofc , (S2.36)

in terms of the degrees of freedom

dofc = Nc −
K∑
k=1

(
Pck
Pk

)2

≥ DOFc , (S2.37)

which is larger than the degrees of freedom in the estimating equations that decompose the
variance of the residuals (S2.31), though still smaller than the biased maximum likelihood
value. Both dofc and DOFc reduce to N −K when C = 1.

S2.2.1 Multi-UERE model selection

Generalizing the results of Sec. S2.1.1, we again evaluate the cross-validated log-likelihood.
However, instead of an exact calculation, we must make asymptotic approximations ignoring
the correlation between the RMS UERE estimates and mean location estimates. These
approximations result in an improved, though not fully unbiased, estimator of the Kullback-
Leibler divergence (AIC).

〈AICC〉 =
〈〈
−2 `

(
〈 ˆUERE

2
〉, µ̂
∣∣∣ r)〉〉 , (S2.38)

=
C∑
c=1

K∑
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nk∑
i=1
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〈
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〈 ˆUERE
2

c〉
wk(ti)

〉
+

〈
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〈 ˆUERE
2

c〉

〉〈〈
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(S2.39)
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c=1
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nk∑
i=1

δck(ti)
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log 2π

〈 ˆUERE
2
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〉
+

〈
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〈 ˆUERE
2
〉

〉
q

(
〈UERE2

c〉
wk(ti)

+
1
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(S2.40)

= q
C∑
c=1

K∑
k=1

nk∑
i=1

〈
log 2π

〈 ˆUERE
2

c〉
wk(ti)

〉
+ q

C∑
c=1

(Nc+Kc)

〈
〈UERE2

c〉
〈 ˆUERE

2

c〉

〉
, (S2.41)

= q

C∑
c=1

K∑
k=1

nk∑
i=1

〈
log 2π

〈 ˆUERE
2

c〉
wk(ti)

〉
+

C∑
c=1

q2(Nc+Kc) dofc
q dofc − 2

, (S2.42)
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and so our second-order AICC values are given by

AICC = q
C∑
c=1

K∑
k=1

nk∑
i=1

log 2π
〈 ˆUERE

2

c〉
wk(ti)

+
C∑
c=1

q2(Nc+Kc) dofc
q dofc − 2

. (S2.43)

S2.2.2 Multi-UERE goodness of �t

Again we start with the internally studentized residuals

u2
ki =

wk(ti)

〈 ˆUERE
2

c〉
|rk(ti)−µ̂k|

2

q
, where δck(ti) = 1 , (S2.44)

and apply the method of Thompson (1935)

|rk(ti)−µ̂k|
2 = α̂2

ki |rk(ti)−µ̌k|
2 , (S2.45)

〈 ˆUEREc

2
〉 = β̂ki 〈 ˇUERE

2

ki〉+
αki
ˆDOFc

wk(ti)
|rk(ti)−µ̌k|

2

q
, (S2.46)

α̂ki =
P̂ck − wk(ti)

〈 ˆUERE
2
c〉

P̂ck
≤ 1 , (S2.47)

β̂ki =
ˇDOFki
ˆDOFc

=

Nc−1−
∑K

k′=1

P̂ck′−
wk(ti)

〈 ˆUERE
2
c〉

P̂k′−
wk(ti)

〈 ˆUERE
2
c〉

ˆDOFc
≤ 1 , (S2.48)

to transform into the externally studentized residuals

t2ki =
wk(ti)

〈 ˇUERE
2

ki〉
|rk(ti)−µ̌k|

2

q
=

β̂ki u
2
ki

α̂2
ki −

α̂ki
ˆDOFc

u2
ki

∼̇ F q

q ďofki
, (S2.49)

ďofki = Nc−1−
K∑
k′=1

 P̂ck′ − wk(ti)

〈 ˆUERE
2
c〉

P̂k′ − wk(ti)

〈 ˆUERE
2
c〉

2

. (S2.50)

The relationship between the internally and externally studentized residuals is no longer as
clear, but this remains a computationally e�cient way of calculating the externally studen-
tized residuals, for which we have a better approximation to the statistic's distribution.

Fisher's Z-statistic is then given by

Zki =
1

2
log t2ki , (S2.51)

and our reduced Z2 statistic is given by

Z2
red =

1

N

K∑
k=1

nk∑
i=1

Z2
ki

〈Z2
ki〉

, 〈Z2
red〉 = 1 , (S2.52)

with the necessary formulas for 〈Z2
ki〉 calculated in relation (S2.23).
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S2.2.3 Mean-zero processes

The simpli�cations to the previous formulas for mean-zero process calibration, such as ve-
locity, are

ˆDOFc = d̂ofc = Nc , α = 1 , βc =
Nc − 1

Nc

, ďofc = Nc − 1 . (S2.53)
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S3 Precision models in practice

Here we detail precision models beyond null model (1.1), for GPS devices that do not supply
informative DOP values or exhibit complications. In App. S4, these models are applied to a
wide range of devices, demonstrating their coverage and utility.

S3.1 DOP proxies

Co-opting DOP values

In lieu of HDOP values, some GPS devices only record �position DOP� (PDOP), �geometric
DOP� (GDOP), or ambiguous DOP values. PDOP values combine HDOP and VDOP;
GDOP values combine PDOP and �time DOP� (TDOP) values. As HDOP and VDOP
values are both a function of satellite number and spread, they are correlated. Therefore, it
is reasonable to co-opt or appropriate related DOP values in the absence of proper HDOP
and VDOP values. Model selection can then determine whether alternative or ambiguous
DOP values are more predictive than nothing (homoskedastic location errors).

By default, when importing data in to ctmm via the as.telemetry() function, and
assuming the data are not of a special variety (Argos Doppler-shift or e-obs), then the
as.telemetry() will �rst look for an HDOP value. If HDOP values are not found, then
as.telemetry() will look for ambiguous DOP values, followed by PDOP and then GDOP
values. If no DOP values are found, then as.telemetry() will look for the reported number
of satellites, and apply model (S3.1) to approximate DOP values.

Number of Satellites

Some GPS data lack DOP values but do record the number of satellites used when triangu-
lating location estimates. Therefore, as proxy for DOP, a positive, monotonically decreasing
function of the number of satellites, Nsat, can be used. The simplest error variance relation
would decay with the density of the GPS satellite constellation, which is proportional to
1/N2

sat. Furthermore, triangulation is not possible with Nsat ≤ 2. Therefore, we can improve
our simplest model to

VAR(Nsat) ∝ HDOP(Nsat)
2 =

(
Nmax−2

Nsat−2

)2

, (S3.1)

where Nmax = 12, which �xes the minimum HDOP value to 1 for convenience. Fig. S3.1
depicts the relationship between HDOP and Nsat, along with our best-�t model. GPS data
was taken from 35 blue wildebeests (Gorgon taurinus albojubatus) and HDOP values were
aggregated into RMS HDOP values and their variance, per value of Nsat, as non-linear least-
squares regressions would not converge when using the full dataset (likely due to truncation
error in the DOP values). To approximate an exact regression on the full dataset, we applied
a weighted non-linear least squares regression to the RMS HDOP values under a log link.
We considered all combinations of models with a power of 2 or unknown and a singularity
at Nsat values of 0, 2, or unknown. In terms of both AIC and BIC, our simple model (S3.1)
outperformed all others, save for the most complex model with both unknown power and
unknown singularity. However, the more complex model could not maintain performance
under di�erent modeling choices�including HDOP summary statistic, regression weights,
and link function�and its parameter estimates were not meaningful.
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Figure S3.1: Horizontal dilution of precision (HDOP) versus number of satellites from 35
GPS collared wildebeests, with the RMS HDOP in red and approximate HDOP model (S3.1)
in blue.
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S3.2 Precision modi�ers

Fix Type

Some GPS devices specify a categorical ��x type� that distinguishes location estimates ob-
tained via di�erent algorithms or with di�erent characteristics. The most common �x-type
levels are 2D versus 3D, where the 2D location estimates are calculated with only 3 satel-
lites and lack corresponding altitude estimates. In principle, HDOP values are supposed to
account for the diminished accuracy of 2D location estimates, however, some GPS devices
require distinct 2D/3D RMS UERE values (App. S4). Furthermore, some GPS devices re-
quire distinct 2D/3D parameters, yet do not provide an explicit �GPS �x-type� column. In
this case, a �x-type column can be calculated from the logical test Nsat > 3.

By default, ctmm's as.telemetry() function will assume that any GPS �x-type column
is meaningful, and create a corresponding location class column in the output telemetry
data object. Model selection can then determine whether or not extra location classes are
supported by the calibration data. as.telemetry() also checks if some location estimates
lack corresponding speed, altitude, and/or DOP values, in which case location classes will be
created to distinguish the level of missingness, as this often corresponds to di�erent location
estimation algorithms.

Time to �x

GPS devices take some amount of time to acquire satellite signals and corresponding satellite
orbital information before estimating a location. Location estimates can either be calculated
with the full orbital information from each satellite in communication, or approximate orbital
information from fewer satellites. In some GPS devices, this change in location estimate
quality occurs at a maximum recorded �time to �x� value, when the device terminates its
attempt to obtain full orbital information and proceeds to an approximate calculation. If
this approximation is not accounted for in the device's HDOP values, then separate �in time�
and �timed out� RMS UERE values may be required (App. S4). Furthermore, as the level
of approximation can vary considerably in �timed out� �xes, their UERE distribution may
be heavy tailed.

In ctmm's as.telemetry() function, the timeout argument can be used to create an
additional location class for TTF values greater than or equal to the timeout value.
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S4 Error-model selection examples

S4.1 Advanced Telemetry Systems

S4.1.1 ATS G2110e

We analyzed calibration data on nineteen Advanced Telemetry Systems (ATS) G2110e
GPS/Iridium collars with two deployments each, where data were collected in 10 and 60
minute intervals for an average of 2.5 days. Before calibration, we removed all gross out-
liers, which constituted 0.3% of the total records. In our �rst round of analysis, we tested
the veracity of the recorded HDOP values against our number-of-satellites model (S3.1) and
homoskedastic location errors. We found the provided HDOP values to be more informative
than nothing (homoskedastic errors), but inferior to our simple number-of-satellites model,
which should not be the case. Performance of the initially best model, ˆHDOP(Nsat), was
poor (Z2

red = 3.9), with a large variation among devices. Upon further investigation into
other data provided by the GPS devices, we notice a smooth, positive trend between the
calibration residuals and time to �x. Therefore we also included powers of (TTF/TTFmin) in
our HDOP model, with the selected model being a product of our number-of-satellites model
and square TTF (Table S4.1), and where the expected RMS location error of this device is
2.4�2.5 meters under ideal conditions (Nsat = 12; TTF = TTFmin), which is small enough to
indicate a higher quality dual-frequency GPS receiver or on-board Kálmán �ltering.

To assess variability among GPS devices, we compared our best joint model to the same
class of model, but with calibration individualized by GPS device and by deployment. In
either case, the increase in performance was not substantial.

Model ∆AICC Z2
red

ˆHDOP(Nsat)× TTF2 0.0 2.9
ˆHDOP(Nsat)× TTF3 816.4 3.3
HDOP× TTF2 1,432.7 3.2
ˆHDOP(Nsat)× TTF1 1,716.0 3.0
HDOP× TTF3 2,403.2 3.7
HDOP× TTF1 2,945.7 3.3

TTF2 4,403.0 3.6
TTF3 5,111.6 4.0
TTF1 6,942.7 4.0
ˆHDOP(Nsat) 7,285.0 3.9
HDOP 8,060.7 4.1

homoskedastic 1,4863.6 5.3

Table S4.1: AICC di�erences and reduced Z2 values for error models �t to calibration data
from nineteen ATS G2110e GPS collars with two deployments each.

S4.1.2 ATS G5-2D

We analyzed calibration data from four ATS G5-2D GPS/Iridium collars, with data collected
in 10-minute intervals for 10-12 days. We pitted the reported HDOP values against our
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number-of-satellites model (S3.1) and a model of homoskedastic errors. Performance of all
three error models was very similar (Table S4.2), though HDOP values only ranged from 0.6
to 2.1, which implies a consistently good signal during calibration. RMS error under ideal
conditions (HDOP=0.6) was estimated to be 3.5-3.6 meters. Variation among devices was
not substantial.

Model ∆AICC Z2
red

homoskedastic 0.0 1.5
HDOP 34.7 1.5
ˆHDOP(Nsat) 39.6 1.5

Table S4.2: AICC di�erences and reduced Z2 values for error models �t to calibration data
from four ATS G5-2D GPS collars.

In cases such as this, where the calibration data had consistently good reception yet the
tracking data might not, we suggest performing error-model selection (but not parameter
estimation) again with the tracking data. It could very well be the case that the HDOP or

ˆHDOP(Nsat) error models prove superior when faced with poor satellite reception.

S4.1.3 ATS G10 UltraLITE

We analyzed calibration data from 15 ATS G10 UltraLITE GPS tags deployed in 4 environments�
deciduous forest, evergreen forest, forested wetland, and clearing�with data collected in
10-minute intervals for 2-15 days. For both horizontal and vertical errors we tested the pro-
vided HDOP, PDOP, and VDOP values against our number-of-satellites model (S3.1) and a
model of homoskedastic errors (Table S4.3). Horizontal errors were comparably modeled by
either HDOP value or our ˆHDOP(Nsat) model, with the RMS error estimated to be 21.0�21.3
meters under ideal conditions (Nsat = 12). However, VDOP values were slightly worse than
all other predictors for vertical errors. There was some variability in horizontal calibration
parameters, with Z2

red dropping from 2.9 to 2.7 upon individual calibration. Di�erences in
performance among habitats was not as signi�cant.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

ˆHDOP(Nsat) 0.0 2.9 homoskedastic 0.0 2.4
HDOP 10.5 2.9 HDOP 27.6 2.4
PDOP 5,993.9 3.4 PDOP 176.6 2.4

homoskedastic 6,174.9 3.4 ˆHDOP(Nsat) 343.6 2.4
VDOP 16,133.3 4.3 VDOP 2,331.3 2.5

Table S4.3: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 15 ATS G10 UltraLITE GPS tags.
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S4.2 Cellular Tracking Technologies

S4.2.1 CTT 1090

We analyzed test data from 3 Cellular Tracking Technologies (CTT) 1090 GPS-GSM tags,
with data collected every 15 minutes for up to 36 hours. For both horizontal and vertical
errors, we compared the performance of reported HDOP and VDOP values against a model
of homoskedastic location errors after removing 3 gross outliers (Table S4.4). RMS horizon-
tal location error was estimated to be 8.7�10.3 meters under ideal conditions (HDOP=1).
Individualized calibration had some impact on performance, decreasing Z2

red from 4.6 to 4.3.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

HDOP 0.0 4.6 HDOP 0.0 2.1
VDOP 175.2 6.9 homoskedastic 69.6 1.6

homoskedastic 191.8 6.4 VDOP 70.0 1.8

Table S4.4: AICC di�erences and reduced Z2 values for error models �t to calibration data
from three CTT 1090 GPS tags.

S4.2.2 CTT BT3

We analyzed calibration data from 8 Cellular Tracking Technologies (CTT) BT3 GPS tags,
with data collected in 10 and 15 minute intervals for up to one month. For both horizontal
and vertical errors, we compared the performance of the reported HDOP and VDOP values
to our ˆHDOP(Nsat) model (S3.1) and a model of homoskedastic location errors (Table S4.5).
There was some variability in horizontal calibration parameters, with Z2

red dropping from 4.3
to 4.0 upon individual calibration.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

HDOP 0.0 4.3 ˆHDOP(Nsat) 0.0 2.3
ˆHDOP(Nsat) 1,528.0 4.7 HDOP 827.4 2.4
VDOP 3,685.0 5.1 VDOP 913.2 2.3

homoskedastic 4,300.5 5.0 homoskedastic 1,744.6 2.3

Table S4.5: AICC di�erences and reduced Z2 values for error models �t to calibration data
from �ve CTT BT3 GPS tags.

S4.2.3 CTT ES400

We analyzed calibration data from 15 Cellular Tracking Technologies (CTT) ES400 (4th Gen)
GPS-GSM solar powered telemetry units, with data collected in 10- and 15-minute intervals
for two weeks. For both horizontal and vertical errors, we compared the performance of
the reported HDOP and VDOP values to our ˆHDOP(Nsat) model (S3.1) and a model of
homoskedastic location errors (Table S4.6). Location errors in both dimensions were best
modeled by our ˆHDOP(Nsat) model, though HDOP was a close second. Curiously, the
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VDOP-based model was outperformed by both ˆHDOP(Nsat) and HDOP for vertical errors.
RMS horizontal error was estimated to be 3.9�4.0 meters under ideal conditions (Nsat=12).
There was slight variability among devices, with Z2

red dropping from 2.4 to 2.3 upon individual
horizontal calibration.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

ˆHDOP(Nsat) 0.0 2.4 ˆHDOP(Nsat) 0.0 1.3
HDOP 1,527.8 2.4 HDOP 732.9 1.3

homoskedastic 10,895.3 2.9 VDOP 4,059.6 1.4
VDOP 16,075.8 3.2 homoskedastic 4,138.7 1.5

Table S4.6: AICC di�erences and reduced Z2 values for error models �t to calibration data
from �ve CTT ES400 GPS collars.

S4.3 e-obs

e-obs devices generally do not provide DOP values, but a �horizontal accuracy estimate�,
which, according to e-obs documentation is an inaccuracy estimate measured in meters.
From personal communications with e-obs, the statistical interpretation of this information�
in terms of a speci�c number of standard deviations or quantile�is unknown. Based on the
following results, ctmm's as.telemetry function imports e-obs horizontal accuracy estimates
as HDOP values.

S4.3.1 e-obs generation-1 GPS collars (1059�1078)

We analyzed calibration data collected from 17 �rst-generation e-obs GPS collars encircled
around a tree and sampled at 10 minute intervals over the course of a day. To con�rm
the veracity of the e-obs error estimates we performed a null hypothesis test, with a null
model of homoskedastic location errors of unknown variance, and an alternative model with
error standard deviations proportional to the e-obs error estimate by treating the e-obs error
estimates as dimensionful HDOP values. We found the e-obs error estimates to be highly
informative (table S4.7), and from these data the RMS �UERE� value was estimated to
be 1.67 (1.63�1.70). RMS horizontal error was estimated to be 5.8�6.1 meters under ideal
conditions. There was slight variability in the devices, with Z2

red decreasing from 2.1 to 2.0
when using individualized horizontal calibration, and where collars with a higher percentage
of missing data yielded smaller RMS UERE estimates.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

horizontal-accuracy 0.0 2.1 horizontal-accuracy 0.0 1.6
homoskedastic 2,442.9 3.1 homoskedastic 160.6 1.6

Table S4.7: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 17 e-obs GPS tags.
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S4.3.2 e-obs generation-3 GPS tags (5081�6375)

We analyzed calibration data from 15 third-generation e-obs solar tags placed at a �xed
location and sampled for 10-20 days with 5-20 minute sampling (depending on battery status)
and 1-second sampling in direct sunlight for a minimum of 10 minutes. With these data, and
using the same error model, the e-obs RMS UERE value was estimated to be 1.673 (1.672�
1.674), consistent with our �rst-generation GPS collars and highly informative (Table S4.8).
Variation among devices was not substantial.

Horizontal Vertical

Model ∆AIC†C Z2
red Model ∆AIC†C Z2

red

horizontal-accuracy 0.0 1.3 horizontal-accuracy 0.0 1.1
homoskedastic 6,167,049 3.2 homoskedastic 2,430,763 1.8

Table S4.8: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 15 e-obs GPS tags. †Due to autocorrelation, the AICC di�erences are exaggerated by
a factor on the order of a hundred.

Due to the presence of substantial autocorrelation in these data, which we did not ac-
count for in estimating the RMS UERE, both the point estimate and standard error are
downwardly biased. We roughly approximate the in�uence of autocorrelation by inspection
of the correlogram (Fig. S4.1), where we note that most of the autocorrelation is gone within
2 minutes of time lag. Following the analysis of Fleming et al. (2019), 10 days of sampling at
2-minute intervals would yield an e�ective sample size on the order of 7200 (10 days / 2 min-
utes), and a resulting bias of 1/7200, which is not substantial. The standard errors, however,
are on the order of 11 (

√
2 minutes / 1 second) times too small. Therefore, a corrected RMS

UERE estimate would be closer to 1.67 (1.66�1.68), which is still highly consistent with our
�rst calibration results. Similarly, the RMS horizontal error would then be 1.70�1.72 meters
under ideal conditions, which includes the data being collected at 1 hertz.

Inspection of the 1-second solar-tag error residuals and error estimates versus time since
the unit was �cold� (not collecting 1-second �xes) revealed RMS location errors that shrink
over time, from 30 meters initially to 3 meters after two minutes, which is evidence of
on-board error-�ltering of the location estimates. Likely related to the e-obs error �lter,
we found two further issues in the 1-second solar tag data not present in the 10-minute
collar data. First, the e-obs error estimates were more substantially autocorrelated for a
more prolonged period of time (Fig. S4.1). Second, the �rst few seconds of cold �xes had
substantially underestimated location errors (∼25%).

S4.3.3 e-obs generation-3 24-gram GPS tags (6577�6752)

We analyzed calibration data from 6 third-generation e-obs 24-gram GPS tags, with location
�xes collected every 2 minutes for 3 days. Three of the tags were placed under forest canopy
and three were placed on a roof. We compared the e-obs �horizontal accuracy estimate�
to a model of homoskedastic errors. The e-obs horizontal accuracy estimate proved to be
informative (table S4.9), but, in contrast to older e-obs models, the RMS UERE was es-
timated to be 0.94 (0.93�0.95). RMS horizontal error was estimated to be 2.6�2.7 meters
under ideal conditions, which suggests a dual-frequency GPS receiver or on-board Kálmán
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Figure S4.1: Joint correlograms of standardized calibration residuals from (A) 17 e-obs
collars sampled at 10-minute intervals and (B) 15 e-obs solar tags sampled at 1-second
intervals. Autocorrelation is not very substantial in the 10-minute calibration residuals
(< 10%), though it is signi�cant at the �rst lag. In contrast, the 1-second e-obs data are
substantially autocorrelated even after 10 minutes of time lag.
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�lter. There was substantial heterogeneity among devices, with AICC decreasing by 4,903.9
and Z2

red dropping from 2.5 to 1.9 when using individiualized horizontal calibration. This
heterogeneity could not be explained by habitat (∆AICC = 4,846.9).

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

horizontal-accuracy 0.0 2.5 homoskedastic 0.0 1.8
homoskedastic 14,234.7 3.8 horizontal-accuracy 614.9 1.8

Table S4.9: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 6 third-generation e-obs GPS tags.

S4.3.4 e-obs generation-3 42-gram GPS tag (7095�7106)

We analyzed calibration data from 5 third-generation e-obs 42-gram GPS tags, with location
�xes collected every 2 minutes for 3 days. Three of the tags were placed under forest canopy
and two were placed on a roof. We compared the e-obs �horizontal accuracy estimate�
to recorded HDOP values, our number-of-satellites error model (Nsat; S3.1), and a model of
homoskedastic location errors (Table S4.10). The e-obs �horizontal accuracy estimate� proved
to be informative, with the RMS UERE estimated to be 0.99 (0.98�1.00). The RMS UERE
value of ∼1 is close to some other third-generation e-obs calibration values and consistent
with the interpretation of the e-obs �horizontal accuracy estimate� being an estimate of the
root-mean-square location error. RMS horizontal error was estimated to be 2.5�2.6 meters
under ideal conditions, which suggests a dual-frequency GPS receiver or on-board Kálmán
�lter. There was slight heterogeneity among devices, with Z2

red dropping from 1.8 to 1.7
when using individualized calibration.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

horizontal-accuracy 0.0 1.8 horizontal-accuracy 0.0 1.6
ˆHDOP(Nsat) 12,123.4 3.3 HDOP 635.3 1.8

homoskedastic 12,166.1 3.2 ˆHDOP(Nsat) 1,119.8 1.8
HDOP 12,630.7 3.5 homoskedastic 1,520.5 1.8

Table S4.10: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 5 third-generation e-obs GPS tags.

S4.3.5 e-obs generation-3 GPS tag (7401�7405)

We analyzed calibration data from 3 third-generation e-obs GPS tags, with location �xes
collected every half hour or hour for 3-6 days in four di�erent environments�on an open
deck, beneath a tree, indoors, and beneath a house. For both horizontal and vertical er-
rors, we compared the e-obs �horizontal accuracy estimate� to ambiguous DOP values, our
number-of-satellites error model (Nsat; S3.1), and a model of homoskedastic location er-
rors (Table S4.11). Again, the e-obs �horizontal accuracy estimate� proved to be the most
informative predictor of horizontal errors, but with the RMS UERE estimated to be 0.86
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(0.84�0.88), which is smaller than that of previous e-obs devices. There was no substantial
di�erence in performance when using per-device calibration, however there were substantial
di�erences across habitat, with a clear trend of the RMS UERE increasing with signal qual-
ity, from 0.35�0.39 beneath the house to 0.95�1.00 in an open setting, which is similar to
the trend we noticed in generation-1 e-obs GPS collars (App. S4.3.1). It appears that, while
the e-obs error estimates are proportional to the location-error variance with good satel-
lite reception, they overestimate variance with poor satellite reception. We leave further
examination to future studies.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

horizontal-accuracy 0.0 2.5 DOP 0.0 1.5
DOP 675.3 2.8 homoskedastic 29.7 1.5

ˆHDOP(Nsat) 748.1 2.9 DOP 183.1 1.7
homoskedastic 924.1 3.0 horizontal-accuracy 214.9 1.8

Table S4.11: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 3 third-generation e-obs GPS tags.

S4.4 GlobalTop

S4.4.1 GlobalTop PA6H

We analyzed calibration data from a GlobalTop PA6H GPS module, with location �xes
taken every second, overnight. The PA6H GPS module returned all relevant DOP values
and the number of satellites, which we compared to a model of homoskedastic location errors
(Table S4.12). In terms of goodness of �t, homoskedastic errors were the best performing
and VDOP values were worst performing, even for vertical errors.

Horizontal Vertical

Model ∆AIC†C Z2
red Model ∆AIC†C Z2

red

HDOP 0.0 1.5 homoskedastic 0.0 0.6
homoskedastic 4,897.2 1.3 HDOP 155.7 0.6

ˆHDOP(Nsat) 7,143.4 1.5 ˆHDOP(Nsat) 1,273.5 0.7
PDOP 11,333.7 1.5 PDOP 3,484.8 0.6
VDOP 17,776.3 1.5 VDOP 6,395.1 0.7

Table S4.12: AICC di�erences and reduced Z2 values for error models �t to calibration data
from a GlobalTop PA6H GPS module. Error models either consist of a single RMS UERE
value, or a di�erent RMS UERE for in-time and timed-out �xes. †Due to autocorrelation,
the AICC di�erences are exaggerated by a factor on the order of a hundred.

60

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.12.130195doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.12.130195
http://creativecommons.org/licenses/by-nc-nd/4.0/


S4.5 Lotek

S4.5.1 Lotek Lifecycle 330

We recovered opportunistic calibration data for Lotek Lifecycle 330 GPS collars from twelve
deceased Mongolian gazelles, all sampled in 23-hour intervals for 5 days to 8 months after
death. This model Lotek collar records a �x type of either 3D or 3D-V, but insu�cient
3D �xes were obtained for calibrating both location classes. The only other location-error
information included was an ambiguous DOP value, which we tested against a model of
homoskedastic location errors. The homoskedastic error model proved to be more predictive
than the DOP values (Table S4.13), but there was substantial variation among GPS collars,
with Z2

red dropping from 2.3 to 1.2 when using individualized horizontal calibration.

Model ∆AICC Z2
red

homoskedastic 0.0 2.3
DOP 50.9 2.5

Table S4.13: AICC di�erences and reduced Z2 values for error models �t to opportunistic
calibration data from 12 Lotek Lifecycle 330 GPS collars.

S4.5.2 Lotek PinPoint 240

In addition to ambiguous `DOP' values, Lotek PinPoint 240 GPS tags record a �duration�
column, corresponding to the number of seconds lapsed before the GPS �x is completed or
�time to �x� (TTF). When using these tags to track wood turtles, a large number of outliers
were observed wherein recorded locations implied biologically implausible speeds, even when
an using error-informed speed estimator on calibrated data (c.f., Sec. 2.3). Upon further
inspection it was noticed that most of these outliers had a maximized �x duration of 70
seconds, which motivated our choice of candidate models.

We performed model selection using calibration data from two tags left under a tree for a
day, with 10-minute sampling intervals. In the candidate models we compared homoskedastic
location errors, DOP values, and our number-of-satellites precision model (Nsat; Sec. S3.1).
Furthermore, we also test for a larger RMS UERE value in the timed-out �xes. Our results
are summarized in Table S4.14.

For the horizontal data, the combination of DOP value and distinct in-time/timed-out
UERE parameters was the clear winner. The horizontal RMS UERE of the timed-out �xes
was four times larger than that of the regular �xes, transforming most of the previously
labeled outliers into normative data (Fig. S4.2). Results were slightly di�erent for the verti-
cal data, with our number-of-satellites precision model (Nsat; S3.1) outperforming the DOP
model. This suggests that the ambiguous DOP value is likely an HDOP value, and demon-
strates the utility of our Nsat model�not only is it capable of outperforming a homoskedastic
error model, but it can also outperform co-opted DOP values. RMS horizontal error was
estimated to be 8.0�8.7 meters under ideal conditions (HDOP=1 & in-time). For the hori-
zontal errors, there was slight heterogeneity among devices, with Z2

red dropping from 2.5 to
2.4 when using individualized calibration.
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Figure S4.2: Residuals of calibration data for Lotek tags when A) considering all location
�xes to share the same RMS UERE value and B) considering regular location �xes and
timed-out location �xes as having distinct RMS UERE values. A shorter tailed residual
distribution indicates a better performing error model.
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Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

DOP & is(timeout) 0.0 2.5 ˆHDOP(Nsat) & is(timeout) 0.0 1.7
ˆHDOP(Nsat) & is(timeout) 571.0 3.2 DOP & is(timeout) 57.4 2.0

DOP 602.2 3.3 ˆHDOP(Nsat) 140.0 1.9
is(timeout) 1,416.6 5.1 is(timeout) 279.7 2.2

ˆHDOP(Nsat) 1,434.0 4.6 DOP 452.0 2.4
homoskedastic 3,724.0 9.6 homoskedastic 773.1 2.3

Table S4.14: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 2 Lotek PinPoint 240 GPS tags. Error models either consist of a single RMS UERE
value, or a di�erent RMS UERE for in-time and timed-out �xes.

S4.5.3 Lotek WildCell GPS-GSM

We collected over three days worth of hourly calibration data from �ve Lotek WildCell
GPS-GSM collars. These data recorded an ambiguous DOP value and whether or not the
location �x was �validated�. The �validated� column proved to be marginally informative,
with validated location �xes having 8.5�9.4 meter RMS horizontal error and non-validated
�xes having 1�3 times that amount, but the DOP values were not found to be informative
(Table S4.15. There was moderate heterogeneity among devices, with the horizontal Z2

red

dropping from 1.8 to 1.5 upon individualized calibration.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

is(validated) 0.0 1.8 DOP 0.0 1.3
homoskedastic 8.0 1.8 homoskedastic 1.4 1.3

DOP & is(validated) 91.5 2.1 DOP & is(validated) 2.0 1.4
DOP 102.6 2.1 is(validated) 3.2 1.3

Table S4.15: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 5 Lotek WildCell GPS-GSM tags. Error models either consist of a single RMS UERE
value, or a di�erent RMS UERE for validated and non-validated �xes.

S4.6 NTT Docomo

S4.6.1 NTT Docomo CTG-001G

We collected a weeks' worth of hourly calibration data from three NTT Docomo CTG-001G
units. The CTG-001G is a cellular-assisted GPS device that can triangulate with cellular
towers, using Japan's GSM equivalent�`Freedom of Mobile Multimedia Access' (FOMO)
(Ishii et al., 2019). This device provided an error estimate in meters, which we tested against
a model of homoskedastic location errors (Table S4.16). A location class was also provided,
but the low-accuracy classes were too sparsely populated for analysis. We found the CTG-
001G error estimates to be highly informative, and there was no substantial variation in
device performance. The RMS location error was estimated to be 3.1�3.4 meters under ideal
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conditions.

Model ∆AICC Z2
red

�error� 0.0 1.9
homoskedastic 1,835.8 5.7

Table S4.16: AICC di�erences and reduced Z2 values for error models �t to opportunistic
calibration data from three NTT Docomo CTG-001G GPS device.

S4.7 Ornitela

S4.7.1 Ornitela 20-gram tag (182902�182928)

We placed three 20-gram Ornitela GPS tags on a roof and three in a forest for 2 days, collect-
ing data in 2-minute intervals. We tested joint error models using the reported HDOP values
and number of satellites, but both of these models failed to outperform one of homoskedastic
location errors (Table S4.17). Because the HDOP values and number of satellites were not
informative, and because habitats di�ered among devices, individual calibrations were highly
heterogeneous, with AICC decreasing 4,116.2 and Z2

red dropping from 2.2 to 1.6. 99% of the
AICC di�erence was solely due to habitat, with forested location errors being twice that
of rooftop errors. In principle, HDOP values can account for signal loss due to a wooded
environment, but, again, the stated HDOP values were not informative.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

homoskedastic 0.0 2.2 homoskedastic 0.0 1.6
HDOP 763.7 2.4 HDOP 374.6 1.5
ˆHDOP(Nsat) 1,717.8 2.5 ˆHDOP(Nsat) 526.2 1.7

Table S4.17: AICC di�erences and reduced Z2 values for error models �t to calibration data
from six 20-gram Ornitela GPS tags.

S4.7.2 Ornitela 25-gram tag (191771�191779)

We placed three 25-gram Ornitela GPS tags on a roof and three in a forest for 2 days, collect-
ing data in 2-minute intervals. We tested joint error models using the reported HDOP values
and number of satellites, but both of these models failed to outperform one of homoskedastic
location errors (Table S4.18). The tags were very heterogeneous, as individualized calibra-
tion caused Z2

red to drop from 3.4 to 2.1. Habitat alone could not explain these di�erences
(∆AICC=2,357.8).

S4.8 Sirtrack

S4.8.1 Sirtrack Pinnacle Solar G5C275F

We recovered opportunistic calibration data for Sirtrack Pinnacle Solar G5C275F GPS-
Iridium collars from three deceased Mongolian gazelles, all sampled hourly for 3-12 months
after death. After a �rst round of calibration, pitting HDOP versus our number-of-satellites
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Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

homoskedastic 0.0 3.4 homoskedastic 0.0 1.7
HDOP 334.0 3.6 HDOP 578.6 1.8
ˆHDOP(Nsat) 1,028.8 3.5 ˆHDOP(Nsat) 2,310.3 2.1

Table S4.18: AICC di�erences and reduced Z2 values for error models �t to calibration data
from six 25-gram Ornitela GPS tags.

model (Nsat; S3.1) and homoskedastic location errors, we noticed a precipitous drop in the
RMS error at precisely 32 seconds of �time on�, which we assume to be the `time to �x'
(TTF). Therefore, we included among our candidate models variants with separate location-
estimate classes for TTF<32 seconds and TTF≥32 seconds (Table S4.19). TTF proved to be

Model ∆AICC Z2
red

is(TTF<32 sec) 0.0 4.2
ˆHDOP(Nsat) & is(TTF<32 sec) 206.8 4.1
HDOP & is(TTF<32 sec) 1,707.6 4.3

ˆHDOP(Nsat) 11,343.1 4.8
homoskedastic 13,681.6 5.5

HDOP 13,810.6 5.0

Table S4.19: AICC di�erences and reduced Z2 values for error models �t to opportunistic
calibration data from 3 Sirtrack GPS collars. Error models either consist of a single RMS
UERE value or separate RMS UERE values for location estimates resolved before or after
32 seconds.

more informative than HDOP, which was not predictive in the Mongolian grasslands where
the collars were used, and the median HDOP value was 1.2. The best-�t RMS UERE was
1.66 meters (1.63�1.68 meters) for location estimates with 32 seconds or more of �time on�,
and 6.56 meters (6.48�6.64 meters) for location estimates with less than 32 seconds of �time
on�. The sub-dekameter scale of the former location errors suggest on-board processing of the
location estimates with su�cient �time on�, even though the scheduled sampling interval was
only one hour. Most likely, this device aggregates multiple location �xes into one reported
estimate. Negligible heterogeneity was observed among devices.

S4.9 Technosmart

S4.9.1 Technosmart GiPSy 5

We collected calibration data from two Technosmart GiPSy 5 tags, both sampled in 10
second intervals for 30 minutes and 9 hours. Although this device came with informative
HDOP values, they were outperformed by our number-of-satellites model (Nsat; S3.1), as
summarized in table S4.20. RMS horizontal error was estimated to be 10.1�10.5 meters
under ideal conditions (Nsat=12). Di�erences in tag calibration were not substantial.
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Horizontal Vertical

Model ∆AIC†C Z2
red Model ∆AIC†C Z2

red
ˆHDOP(Nsat) 0.0 2.1 ˆHDOP(Nsat) 0.0 1.5
HDOP 491.5 2.3 HDOP 656.8 2.0

homoskedastic 966.9 2.3 homoskedastic 953.4 1.8

Table S4.20: AICC di�erences and reduced Z2 values for error models �t to calibration
data from 2 Technosmart GiPSy GPS tags. †Due to autocorrelation, the AICC di�erences
are exaggerated by a factor on the order of ten.

S4.10 Telemetry Solutions

S4.10.1 TS Quantum 4000 Enhanced

Model Quantum 4000 Enhanced Telemetry Solutions (TS) GPS tags report an HDOP, num-
ber of satellites, and location �x type, which is either 2D or 3D depending on whether or not
three or more more satellites were in reception. Both the 3D and 2D �xes are accompanied
with HDOP values, and the 2D HDOP values were on-average larger than the 3D HDOP
values, which is expected to be the case if the 3D and 2D HDOP values are on the same
scale.

We performed model selection on calibration data from two tags left under a tree for a
month, with 2-hour sampling intervals. We considered models with 1-2 RMS UERE values
for the 3D/2D �x types, and we also pitted the HDOP values against homoskedastic location
errors and our number-of-satellites precision model (Nsat; S3.1). Our results are summarized
in Table S4.21. The highest performing model featured HDOP-informed errors, but di�erent
RMS UERE values for the 3D and 2D �xes. The 2D RMS UERE was approximately four
times larger than the 3D RMS UERE. RMS horizontal error was estimated to be 6.5�7.4
meters under ideal conditions (HDOP=1 & 3D). There was no signi�cant heterogeneity
between the two devices.

Model ∆AICC Z2
red

HDOP & is(2D) 0.0 2.4
ˆHDOP(Nsat) & is(2D) 225.4 3.3

ˆHDOP(Nsat) 248.6 3.6
HDOP 286.6 3.9
is(2D) 418.5 3.7

homoskedastic 637.3 4.7

Table S4.21: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 2 Telemetry Solutions GPS tags. Error models either consist of a single RMS UERE
value or separate RMS UERE values for 2D and 3D location estimates.

S4.11 Telonics

�Gen4� Telonics data come standard with both an HDOP value and a �horizontal error�
estimate in meters, with the two values not proportional and instead corresponding to er-
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ror estimates of di�ering quality. Telonics documentation describes the new horizontal er-
ror estimate as a 100% con�dence radius, but this is unlikely to be the case. In personal
communications with Telonics, the speci�c quantile or number of standard deviations was
unknown. Given that the Gen4 horizontal error estimates are measured in meters, we con-
sidered a model where they are proportional to the RMS horizontal error. Furthermore,
Gen4 Telonics data contain two distinct location classes�regular GPS location �xes and
�quick-�x points� (QFPs). The quick �xes do not come with a corresponding error estimate
and Telonics documentation explicitly states that their RMS UERE value is larger than that
of the ordinary �xes. Based on the following results, ctmm's as.telemetry function ignores
the Telonics Gen4 error estimate and instead uses HDOP values. Location classes are also
designated, based on whether or not the location �x is a QFP.

S4.11.1 Telonics Gen4 GPS-VHF

To determine the calibration parameters of Telonics Gen4 GPS-VHF collars, we used oppor-
tunistic calibration data collected from one deceased lowland tapir (Tapirus terrestris) and
two collars that detached from lowland tapir, all sampled hourly in the Pantanal for 2 to
25 days. We pitted the Telonics Gen4 �horizontal error� estimate against HDOP values, our
number-of-satellites model (Nsat; S3.1), and homoskedastic errors (Table S4.22). The HDOP
values proved to be the most predictive, with an RMS UERE of 6.2 meters (6.0�6.4 meters).
However, the HDOP model was not substantially di�erent from a model of homoskedastic
location errors, and, surprisingly, the �horizontal error� estimates did not appear propor-
tional to RMS location errors. RMS horizontal error was estimated to be 4.8�5.1 meters
under ideal conditions (HDOP=0.8). Variation among devices was not substantial.

Only one of the three devices recorded QFPs. By �tting an error model with two RMS
UERE values�one for regular location estimates and another for QFPs�we found the QPF
RMS UERE to be about twice that of the regular RMS UERE, which is consistent with
Telonics documentation.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

HDOP 0.0 1.9 homoskedastic 0.0 1.3
ˆHDOP(Nsat) 77.9 2.0 HDOP 52.9 1.3

homoskedastic 79.5 1.8 ˆHDOP(Nsat) 58.0 1.3
horizontal-error 437.8 2.8 horizontal-error 418.0 1.8

Table S4.22: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 3 Telonics Gen4 VHF GPS collars.

S4.11.2 Telonics Gen4 GPS-Iridium

We performed a follow-up analysis with newer Telonics Gen4 GPS-Iridium collars, using
opportunistic calibration data from three detached collars, all sampled hourly in the Cerrado
for 2-3 days. Our model comparison resulted in the same model ranking for horizontal errors
(Table S4.23), with the selected model based on HDOP, though the GPS-Iridium RMS
UERE value of 6.9 meters (6.4�7.4 meters) was slightly larger than that of the GPS-VHF
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model (6.0�6.4 meters). RMS horizontal error was estimated to be 2.6�3.0 meters under
ideal conditions (HDOP=0.4). Variation among devices was not substantial.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

HDOP 0.0 1.7 HDOP 0.0 1.5
ˆHDOP(Nsat) 23.8 1.9 ˆHDOP(Nsat) 6.1 1.2

homoskedastic 49.7 2.0 homoskedastic 18.0 1.2
horizontal-error 171.7 2.6 horizontal-error 71.1 1.4

Table S4.23: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 3 Telonics Gen4 Iridium GPS collars.

S4.12 UniKN

S4.12.1 UniKN Logger GPS tag

We placed three UniKN Logger solar tags on a roof for two weeks, where under sunlight con-
ditions they were able to obtain location �xes approximately every 16 minutes. This model
UniKN Logger tag did not report an HDOP value, but it did report the number of satel-
lites, with which we applied number-of-satellites precision model (S3.1). After removing one
gross outlier, the best performing model was our number-of-satellites model (Table S4.24).
RMS horizontal error was estimated to be 9.3�10.1 meters under ideal conditions (Nsat=12).
There was no signi�cant variability among devices.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

ˆHDOP(Nsat) 0 2.1 ˆHDOP(Nsat) 0 1.1
homoskedastic 66.9 2.3 homoskedastic 57.0 1.2

Table S4.24: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 3 UniKN Logger GPS tags.

S4.13 Vectronic

S4.13.1 Vectronic GPS Plus

We collected testing data on 6 Vectronic GPS Plus collars, with �xes taken in 15-minute
intervals for 2 hours. With less statistically e�cient methods this might have been too little
data to analyze, but with our minimum-variance unbiased (MVU) parameter estimators
and AICC values, and the ability to pool the 6 datasets into a joint estimate, this was
enough data to provide 50 degrees of freedom in the RMS UERE estimates. In addition
to ambiguous DOP values, the devices also recorded an error estimate in meters, which
was described in Vectronic's documentation as �the di�erence [m] between the real position
and the transmitted position�. We compared (ambiguous) DOP values and recorded error
estimates (in meters) to a model of homoskedastic location errors, and found the on-board
error estimates to be the most predictive (Table S4.25). Di�erences in performance among
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devices were not very signi�cant. The estimated RMS UERE for the recorded error estimates
was 0.80�1.06, which is consistent with these being estimates of the RMS location error.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

�error� 0 1.5 �error� 0 0.9
DOP 31.4 1.7 DOP 39.6 1.2

homoskedastic 49.3 2.8 homoskedastic 46.4 2.0

Table S4.25: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 6 Vectronic GPS Plus collars.

S4.13.2 Vectronic Vertex Lite-3D GPS-Iridium

We collected calibration data on 18 Vectronic Vertex Lite-3D GPS-Iridium collars, with �xes
taken in 15-minute and 4-hour intervals for 11 days. We compared the reported (ambiguous)
DOP values to a model of homoskedastic location error, and found them to be only mildly
informative (Table S4.26). RMS horizontal error was estimated to be 16.3�16.9 meters
under ideal conditions (HDOP=0.8). There was slight variability among devices, with Z2

red

dropping from 2.5 to 2.4 upon individualized calibration.

Horizontal Vertical
Model ∆AICC Z2

red Model ∆AICC Z2
red

DOP 0 2.5 DOP 0 1.5
homoskedastic 513.0 2.6 homoskedastic 281.6 1.6

Table S4.26: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 18 Vectronic Vertex Lite GPS collars.

S4.14 Vemco

Vemco positioning system (VPS) devices are analogous to GPS, but with acoustic com-
munication to an array of �xed receivers instead of electromagnetic communication to a
constellation of satellites, so that they can function underwater where GPS signals rapidly
attenuate. VPS location estimates come with an `HPE' value, which Vemco documentation
describes as being analogous to GPS HDOP and requiring site speci�c calibration.

S4.14.1 Vemco HR2-V9 VPS

We attached 6 V9 180-kHz VPS tags to static moorings (metal poles �xed in cement anchors)
and collected data over the span of 3 months in a Vemco HR2 high-residence-receiver network.
The median sampling interval was 28 seconds, but some location estimates were obtained
within a fraction of a second. Inspection of the residual correlogram (when using the HPE
null model) revealed that approximately half of the autocorrelation decayed within minutes,
which is similar in behavior to GPS. The remaining autocorrelation took on the order of a
day to decay, which could be due to movement in the calibration tags, �ltering in the VPS
location estimates, or some other property of VPS �xes.
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We considered three candidate error models: a model of homoskedastic location errors, a
null model of HDOP = HPE, and a model of HDOP = RMSE, where RMSE was an unknown
column in the data that we hoped might correspond to an RMS location-error estimate. We
found HPE to provide the best error model (Table S4.27), with an RMS UERE of 5.8 meters.
There was substantial variability among locations, with RMS UEREs ranging 3�9 meters
and the reduced Z2 statistic shrinking from 2.1 to 1.4 upon individualized calibration, but
there was no signi�cant dependence on depth.

Model ∆AIC†C Z2
red

HPE 0.0 2.1
homoskedastic 7.5× 106 5.3

RMSE 5.4× 107 64.0

Table S4.27: AICC di�erences and reduced Z2 values for error models �t to calibration data
from 6 VPS tags. †Due to autocorrelation, the AICC di�erences are exaggerated by a factor
on the order of ten.
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S5 Error-informed statistics for outlier estimation

S5.1 Distance statistics for outlier estimation

First we consider a location sample r = (x, y) and corresponding displacement vector d =
r − µ0, as measured from a reference point µ0. For the reference point µ0 we consider
the geometric median, which can be robustly estimated, and we ignore its relatively small
O
(
n−1/2

)
error, but other choices are also possible. In considering a normal distribution for

the sampled location

r ∼ N (µ, σ2 I) , (S5.1)

with unknown true location µ and known location error variance σ2, which we do not assume
to be stationary in time, the distribution of the displacement vector d is then distributed
according to

d ∼ N (∆, σ2 I) , ∆ = µ− µ0 , (S5.2)

where ∆ is the true displacement vector. Choosing a coordinate system with the x-axis par-
allel to ∆, our distribution can be represented in polar coordinates with d = (d cos θ, d sin θ)
as

p(d, θ) =
e−

(d cos θ−∆)2+(d sin θ)2

2σ2

2πσ2
, (S5.3)

=
e−

d2+∆2

2σ2

2πσ2
e+ d∆

σ2 cos θ , (S5.4)

where the circular error assumption is critical to obtaining this tractable relation. The
marginal distribution of d is then

p(d|∆) =

∫ +π

−π
p(d, θ) dθ =

e−
d2+∆2

2σ2

2πσ2
I0

(
d∆

σ2

)
, (S5.5)

where In is the modi�ed Bessel function of the �rst kind. The log-likelihood function is then
given by

`(∆|d) = log(2πσ2)− d2

2σ2
− ∆2

2σ2
+ log I0

(
d∆

σ2

)
, (S5.6)

and so by di�erentiation the maximum likelihood estimate ∆̂ of the true distance ∆ satis�es
the transcendental equation

d∆̂

σ2
I0

(
d∆̂

σ2

)
=
d2

σ2
I1

(
d∆̂

σ2

)
, (S5.7)

or equivalently

z I0(z) = w I1(z) , (S5.8)
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where z = d∆̂/σ2 and w = d2/σ2. We solve this equation via Newton-Raphson iteration,
expanding the Bessel functions around the current best estimate. It can be shown that
∆̂ < d, as should result from the inclusion of a location-error model, and limd�σ ∆̂ = d,
which also must be the case. Interestingly, for all d2 < 2σ2, ∆̂ = 0.

Finally, from the Hessian of the log-likelihood function, and after some algebraic simpli-
�cation using (S5.7), we have the uncertainty estimate

ˆVAR[∆̂] =
σ2

2− d2−∆2

σ2

, (S5.9)

which becomes larger than σ2/2 as the improved distance estimate ∆̂ becomes smaller than
the naive distance estimate, d.

S5.2 Speed statistics for outlier estimation

For speed-based outlier detection, we want to avoid accidentally ruling out realistically fast
displacements during which motion would be ballistic. Therefore, it is su�cient to consider
speed as distance ∆ = |µ2 − µ1| divided by time, ignoring tortuosity. To condition on as
few locations as possible, we only consider sequential pairs. For the distance estimate, we
use the results of the previous section, where the variance is now the sum of the variances
of the two locations, or σ2 = σ2

1 + σ2
2 . Otherwise, all relations there are the same.

In dividing distance by the sampled time t̂ = t̂2 − t̂1, there are situations where roundo�
or truncation errors in t result in large values of the distance/time estimate, with otherwise
usable data (permitting a location-error model). To accommodate truncated times, it is
easier to model the imparted location error, when considering the rounded time as true,
than it is to directly consider the temporal error caused by rounding. In the outlie method,
we use a greatest common divisor routine to attempt to automatically detect the temporal
sampling resolution δ, which is usually 1 second, but frequently a minute, hour, or day.
Then we count the maximum M = maxMi of the number of location �xes Mi per truncated
time t̂i. The minimum time to �x is then estimated by δ/M , which we subsequently use in
place of zero for our speed estimates. Note that none of these crude estimates are used in
movement analysis, but only for outlier detection.

Thus far, we have estimated speeds over the intervals, such as (t1, t2) and not speci�cally
at the sampled times. To clean the data, we assign the highest speeds to the most suspect
times. We proceed in ordered fashion from the smallest speed estimate to the largest speed
estimate and assign each speed estimate to the adjacent time with the larger adjacent speeds,
with the newer (larger) speed estimates overwriting the older (smaller) speed estimates. At
the endpoints we compare to both the �rst (adjacent) times and the second times out. For
convenience, we precede this loop by a reverse-ordered loop with reverse (low-speed) assign-
ment to ensure the low-speed times are populated as well. If any outliers are removed, the
speeds can be re-estimated to test for consecutive outliers. This speed assignment heuristic
has substantial advantages over simpler heuristics, such as assigning the average adjacent
speed estimate, which can result in false positives, or assigning the minimum adjacent speed
speed estimate, which can result in false negatives.
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S6 Errors in variograms

S6.1 Fast variogram of errors

For evenly sampled data z(t), the empirical variogram is given by

γ̂(τ) =
1

2n(τ)

∑
t2−t1=τ

|z(t2)− z(t1)|2 , (S6.1)

here in one dimension and where n(τ) =
∑

t2−t1=τ denotes the number of location pairs with
time-lag τ between them. If location errors are additive, mean zero and uncorrelated, then
the �observed� empirical variogram decomposes into the semi-variance function of the true
movement plus the semi-variance of the location error.

γobs(τ) = γmove(τ) + γerror(τ) , (S6.2)

The data provides us with γobs(τ), and the �tted movement model provides us with γmove(τ).
Therefore, it is useful to have an estimate of γerror(τ) to �nalize our comparison between the
model and data.

The error variogram is given by

γ̂error(τ) =
1

2n(τ)

∑
t2−t1=τ

|error(t2)− error(t1)|2 , (S6.3)

where the location errors are unknown, but can safely be considered as independent if the
data are not sampled at exceptionally high frequencies (i.e., ≥ 1/min). Therefore, for positive
time lags we have simply

γ̂error(τ) =
1

2n(τ)

∑
t2−t1=τ

(VAR[error(t2)] + VAR[error(t1)]) (τ > 0), (S6.4)

which we can estimate from DOP and RMS UERE values.
Naively, relation (S6.4) involves a sum for each lag, which would imply an O(n2) compu-

tational cost for n sampled locations. In (Marcotte, 1996), an O(n log n) algorithm is given
for the ordinary variogram (S6.1), by leveraging the fast Fourier transform (FFT). Here, we
provide an O(n log n) algorithm FFT algorithm for the error variogram, under the assump-
tion that we have the timeseries VAR[error(t)]. The trick begins by including an indicator
function χ(t) that evaluates to 1 if time t is sampled and 0 otherwise.

γ̂error(τ) =
1

2n(τ)

∑
t2−t1=τ

(χ(t1)VAR[error(t2)] + χ(t2)VAR[error(t1)]) (τ > 0). (S6.5)

Then we may express the constrained sum with a Kronecker delta function as

γ̂error(τ) =
1

2n(τ)

∑
t1,t2

(χ(t1)VAR[error(t2)] + χ(t2)VAR[error(t1)]) δt2−t1=τ (τ > 0). (S6.6)
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Next, by expanding the Kronecker delta functions in a suitable harmonic basis (Péron et al.,
2016), we have for positive lags

γ̂error(τ) =
1

2n(τ)

∑
t1,t2

(χ(t1)VAR[error(t2)] + χ(t2)VAR[error(t1)])
1

N

∑
f

e2πıf(t2−t1−τ) ,

(S6.7)

=
1

2n(τ)

1

N

∑
f

(∑
t1

χ(t1) e−2πıft1
∑
t2

VAR[error(t2)] e+2πıft2 + conj.

)
e−2πıfτ ,

(S6.8)

=
1

n(τ)
DFT−1{Re[DFT{χ}∗DFT{VAR[error]}]} , (S6.9)

in terms of discrete Fourier transform operations.

S6.2 Error-adjusted variogram

Here, instead of estimating the in�uence of error on the conventional variogram, we provide
a semi-variance estimator that accounts for error. Because our error adjustment cannot be
implemented with fast Fourier transforms, we consider the weighted variogram

γ̂(τ) =

∑
ti−tj=τ wij |z(ti)−z(tj)|2

2
∑

t′i−t′j=τ
wi′j′

, (S6.10)

which is more robust to irregular sampling (Fleming et al., 2014a; Fleming and Calabrese,
2015). It is straightforward to show that this estimator maximizes the χ2 log-likelihood
function

`(γ(τ)) = −1

2

∑
ti−tj=τ

wij

(
log 2πγ(τ) +

1
2
|z(ti)−z(tj)|2

γ(τ)

)
. (S6.11)

Therefore, we can generalize this model to erroneous observations ẑ with observation error.

`(γ(τ)) = −1

2

∑
ti−tj=τ

wij

(
log 2π (γ(τ)+Eij) +

1
2
|ẑ(ti)−ẑ(tj)|2

γ(τ) + Eij

)
, (S6.12)

Eij =
1

2
(VAR[error(ti)] + VAR[error(tj)]) . (S6.13)

The maximum-likelihood estimate then satis�es the relation

γ̂(τ) =

∑
ti−tj=τ

wij(
1+

Eij
γ̂(τ)

)2
1
2
|ẑ(ti)−ẑ(tj)|2∑

ti−tj=τ
wij

1+
Eij
γ̂(τ)

, (S6.14)

which can be used to solve for γ̂(τ) iteratively. An example calculation is given in Fig S6.1.
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Figure S6.1: Conventional (black) and error-adjusted (blue) empirical variograms and AIC-
best theoretical semivariance function (red) for a GPS-tracked wood turtle. The variogram
is an unbiased measure of autocorrelation structure that estimates the average square dis-
placement (y-axis) between two locations that are some time lag apart (x-axis), modulo a
factor of 1/4 in two dimensions. In the conventional variogram (black) this square displace-
ment is a combination of movement and location error, which causes an initial discontinuity
or `nugget e�ect'. In this case, two locations sampled closely together in time will be almost√

4× 200 m2 ≈ 28 m apart (RMS average), because of substantial location error from under-
brush and canopy. The error-adjusted variogram, directly based on the data, and theoretical
semivariance function, based on the AIC-best movement model, both agree that it actually
takes the wood turtle ∼3 days, on average, to be found this far from the previous location.
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S7 Delta approximation for �xed error estimates

Here we discuss an alternative method of integrating calibration and movement data. If we
trust the movement model enough to allow our tracking data to update both the movement
parameter estimates θ and the error parameter estimates φ, then the joint likelihood is
simply the product of the calibration and tracking data likelihoods

`joint(θ,φ|Xtrack,Xcal) = `track(θ,φ|Xtrack) + `cal(φ|Xcal) . (S7.1)

However, if we do not trust our movement model enough to allow it to update the error
model, then we can instead draw error parameters from the sampling distribution associated
with `cal and treat them as �xed values within `track. The log-likelihood at a given value of
φ̂ is asymptotically given by

`track

(
θ
∣∣φ) = `track

(
θ̂(φ)

∣∣φ)+
1

2

(
θ−θ̂(φ)

)T

∇θ∇T
θ `track

(
θ̂(φ)

∣∣φ)(θ−θ̂(φ)
)
, (S7.2)

which is maximized at θ̂(φ), but we do not know the true parameters φ. Next considering
the random variable φ̂, we have the asymptotic expansion

`track

(
θ
∣∣φ) = `track

(
θ(φ̂)

∣∣φ̂)+
(
φ−φ̂

)T

∇φ `track

(
θ(φ̂)

∣∣φ̂)
+
(
φ−φ̂

)T

∇φ∇T
θ `track

(
θ(φ̂)

∣∣φ̂)(θ−θ̂(φ̂)
)

+
1

2

(
θ−θ̂(φ̂)

)T

∇θ∇T
θ `track

(
θ(φ̂)

∣∣φ̂)(θ−θ̂(φ̂)
)
, (S7.3)

which upon maximization gives us the asymptotic relation

θ̂(φ) = θ̂(φ̂) +
[
∇θ∇T

θ `track

(
θ(φ̂)

∣∣φ̂)]−1 [
∇θ∇T

φ `track

(
θ(φ̂)

∣∣φ̂)](φ̂−φ) . (S7.4)

The uncertainty in φ̂ contributes unbiased error to the �nal estimate. Therefore, our �nal
point estimate is the same as when considering our point estimate φ̂ to be the true value,
but the covariance is increased according to

COV
[
θ̂(φ)

]
= COV

[
θ̂(φ̂)

]
+

COV
[
θ̂(φ̂)

] [
∇θ∇T

φ `track

(
θ(φ̂)

∣∣φ̂)]COV
[
φ̂
] [

∇φ∇T
θ `track

(
θ(φ̂)

∣∣φ̂)]COV
[
θ̂(φ̂)

]
,

(S7.5)

where the naive covariance is given by

COV
[
θ̂(φ̂)

]
= −

[
∇θ∇T

θ `track

(
θ(φ̂)

∣∣φ̂)]−1

, (S7.6)

which treats the error estimate as the truth. In conclusion, we can estimate our movement
parameters under the assumption that the error parameters are known, calculate the cross
derivatives of the log-likelihood function with respect to both movement and error param-
eters, and with this information account for error uncertainty in the movement parameter
estimates without updating them. This is asymptotically equivalent to drawing values of
φ̂ from the calibration sampling distribution, and then repeatedly estimating movement
parameters conditional on those values.
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